RECORDS

OF THE

SURVEY OF INDIA

Volume XIII

(Supplementary to General Report 1917-18).

ANNUAL REPORTS OF

PARTIES AND OFFICES

1917-18.
prepared under the direction of
Colonel C. H. D. RYDER, C. I. E., D. S. O., R. E. Offg. Surveyor General of India.

DEHRA DON
PRINTED AT THE OFFIOE OF THE TRIGONOMETRICAL SUEVEY 1919

CONTENTS.

PART I.
 TOPOGRAPHICAL SURVEY.

Page.
NORTHERN CIRCLE. Summary 3
No. 1 Panty 3
No. 2 Party 6
No. 3 Party 8
The Sind-Sagar Party 9
The Riverain Detachment 12
SOUTHERN CIRCLE. Summaiy 15
No. 5 Party 15
No. 6 Party 17
No. 7 Party 19
No. 8 Party 21
No. 20 Party (Cantonment) 23
EASTERN CIRCLE. Summary 24
No. 9 Party 24
No. 10 Palty 26
No. 11 Party 28
No. 12 Party 31
Table I.-Out-tulins of Plane-tabling 34
Table II.-Details of Triangulation and Traversing 36
Table 1II.-Cost-rates of Survey 38
PART II.
GEODETIC AND SCIENTIFIC OPERATIONS.
Astronomical Latitudes. No. 13 Party 41
Pendulum Operations. No. 14 Party 41
Triangulation. No. 15 Party 43
Tidal Operations. No. 16 Party 45
Levelling. No. 17 Party 57
Magnetic Survey. No. 18 Party 65
Base Line. No. 19 Party 85
The Computing Office. Adjustment of Triangulation 86
Levelling 86
Miscellaneous Computations 86
Triangulation Pamphlets 86
Printing Section 86
Workshops 86
Requisitions 86
Miscellaneous 86
List of earthquakes 87
Solar Photograply 87

PART III.

SPECIAL REPORTS.

Type of 20 feet guyed signal used in observations by Sind Sāgar Party.
From a photograph by Mr. J. C. C. Lears.

Vernäg Spring with enclosure and garden, built by the Mogul Emperor Jahangir: Anantnāg Tahsil,

PART I.-TOPOGRAPHICAL SURVEY.
 NORTHERN CIRCLE.

(Vide Index Maps 1 and 4.)

Summary.-The topographical work of the Circle was greatly retarded owing to depletion of strength due to the war, and to the following causes:-
(a) No. 4 Party was kept in abeyance as a topographical unit on the formation of the Sind-Ságar Rectangulation Party as reported last year.
(b) The three topographical parties remaining had to carry out urgent survey on the three-inch scale of seven Artillery Practice Camps, which were in some cases very distant from current work.
(c) Nos. 2 and 3 Parties bad to carry out a good deal of special Himãlayan Forest Survey.
The detail survey consisted of :-

Besides this the Sind-Sägar Party completed the triangulation of the Sind-Sägar area preliminary to the demarcation of rectangles, and the Riverain Detachment continued its usual work for the Punjab Government.

During the recess season, 14 civilian pupils and 9 soldier surveyors joined the department and were given preliminary training by No. l Party.

The Circle was under the administrative control of Lieut.-Colonel C.L. Robertson, C.M.G., R.E., up to 15 th March 1918, of Colonel C.H.D. Ryder, C.I.E., D.S.O., R.E., from 16th to 30th March 1918, of Colonel G.P. Lenox-Conyngham, R.E., F.R.S., from 31st March to 9 th April 1918 and of Lieut.-Colonel H.L. Crosthwait, R.E., after that date.

No. 1 PARTY (PUNJAB AND NORTH-WEST FRONTIER PROVINCE). By Captain W.E. Perry, M.C., R.E.

1. The field head-quarters of the party opened at Hoshiairpur on the 5th November

Perbonnel.

Inperial Officer.
Major E.A. Tandy, R.E., in charge from 16th May 1918.

Provincial Officers.

Mr. B.R. Hughes, in charge from lst October 1917 to 9th April 1918.
G.J.S. Rae.
., If.P.D. Morton to 4th July 1918 and in charge from 10th April to 151h May 1918.
" P.A.T. Kenny.
" R.C. Hanson,
(" G.A. Norman.
Opper Subordinate Service.
Mr. Sher Jang, E.B. (on leave).
" Jagdeesh Prbebd Vastav.

1) Afraz Gul Kban (Probationer).

Lowar Subordinato Service.

1917, and reopened on l5th May 1918 at its recess quarters in Mussoorie.

The country surveyed during the winter consisted of low intricate siwaliks as well as higher wooded hills, and low cultivated valleys and plains intersected by numerous watercourses.

The health of the party was good.
2. Plane-tabling.-The 1561 square miles of country surveyed on the scale of one inch to a mile, comprised 7 square miles of original survey in Chamba State, 347 sq quare miles of revision survey in Hoshiarpur and Jullundur districts, and 1,207 square miles of supplementary survey in Hoshiàrpur and Kāngra districts and the Simla Hill States, and lay in the following sheets:-

$$
43 \frac{\mathrm{p}}{15(\text { part })} \text { and } 53 \frac{\mathrm{~A}}{1,2,3,4,6,7} .
$$

The part of sheet $43 \frac{\mathrm{P}}{15}$ was isolated from the main programme, and comprised an area of 7 equare miles of original surver in Chamba State,
and 29 square miles of supplementary survey in Kanngra district. The survey was particularly required in order to complete this sheet to margin and enable it to be drawn as a full sheet, the rest of it having been surveyed in 1916-17. This survey necessitated special arrangements being made, and as the area was very small, the cost-rates are cousiderably higher than usual; this work has boen shown separately in the tables etc., accompanying this report. Sheets $53 \frac{\text { A }}{6 \text { and } 7}$ were shown as surveyed in modern style in previous Indexes, but actually they had only been drawn in new style from previous surveys, and have now been revised.

In addition to survey work on the scale of one inch to a mile, an area of $306 \cdot 5$ square miles was surveyed on the scale of three iuches to one mile for Artillery Practice Camps. Four of these Artillery Practice Camps were surveyed. (1) An area of $102 \cdot 7$ square miles at Akora in the Peshāwar district of the North-West Frontier Province; (2) an area of 61.4 square miles in the Hoshiarpur district of the Punjab; (3) and (4) an area of $1+2+$ square miles in the Quetta-Pishin district of Baluchistān for the contiguous Artillery Practice Camps of Yāru and Bostān.

In the Akora area the country consisted of open cultivated plains and low hills of an intricate nature intersected by numerous streams. The Hoshiarpur country has been described in para one. The Yāru-Bostăn area comprised intricate broken hills and plains intersected by numerous dry watercourses, and very sparsely cultivated; the ground varied from 4,900 to over 11,000 feet in height. The water in this area was bad, and there was much fever and dysentery, and one deatl, amongst the section under Mr. P. A. T. Kenny who did the survey, which moreover was carried out in very hot weather between June and September.

The distribution of the party for carrying out the above programme was as follows. A section of 12 surveyors under Mr. H. P. D. Morton was employed from October to November on the Akora three-inch Artillery Practice Camp work. This section then proceeded to Hoshiārpur. In the meantime, a section of 12 survevors under Mr. R. C. Hanson had started on sheets $53 \frac{A}{1,2,3,4}$. Mr. B. R. Hughes, (then officer in charge), started the three-inch Hoshiárpur Artillery Practice Camp work with Mr. G. A. Norman and 3 surveyors. On the arrival of Mr. Morton's section, 18 surveyors were divided into :-

> No. 1 Camp.-Mr. Morton sheets $53 \frac{\mathrm{~A}}{1,2,6}$
> No. 2 Camp.-Mr. Hanson sheets $53 \frac{\mathrm{~A}}{3,4,7}$

When Mr. Hughes was transferred, Mr. Morton took over the Hoshiārpur Artillery Practice Camp work. Mr. Vastav surveyed the outlying portion of sheet $43 \frac{\mathrm{P}}{15}$.
Mr. Kenny in June 1918 with a section consisting of Mr. Norman, Mr. Afraz Gul Khan, and 13 surveyors (including 7 pupil soldier-surveyors), undertook the Quetta-Pishin work already mentioned.

The cost-rates of the different classes of survey were :-

The higher rate of the last named is due to the fact that seven soldier surveyor pupils, who joined the party in July 1918 for their first period of extra training, were put on to this work, and being beginners their out-turn was small; also considerable sums had to be paid for local escorts. The high cost-rate of the one-inch original survey has already been explained.
3. Triangulation.-No triangulation in advance has been done during the year under report for the ordinary programme of the party.
4. Traversing. - No traversing in advance was done during the year under report for the ordinary programme of the party, but a supplementary traverse of 23.6 miles was run by Mr. Morton for the Artillery Practice Camp survey at Hoshiārpur, to furnish intersected points and heights to trijunction pillars. The cost-rate was Rs. $19 \cdot 8$ per linear mile.
5. Recess Duties.- During the field season Messrs. Rae (on leave from November to January) and Kenny were employed at recess headquarters with a section of 16 draftemen and surveyors on fair-mapping.

Distribution at first:-
Mr. Kenny and 16 men,
Four-inch Peshāwar military survey.
Three-inch Akora Artillery Practice Camp.
One-and-half-inch mapping, sheets $43 \frac{\mathrm{P}}{3,4,6, \overline{,}, \overline{, 11,12}}$.
Then from March :-
(a) Mr. Rae and 7 men,

One-and-half-inch fair-mapping, sheets $43 \frac{P}{3,4,5,8,7,8,9,10,11,12,13,14}$.
(b) Mr. Kenny and 9 men,

Four-inch Peshāwar military survey.
Three-inch Akora Artillery Practice Camp.
Three-inch Hoshiārpur Artillery Practice Camp.
During recess the duties were allotted as follows:-
(a) Mr. Rae with a section of 13 men,

One-and-half-inch mapping, sheets $43 \frac{\Gamma}{3,5,6,7,71,12,13}$.
Three-inch Hoshiārpur Artillery Practice Camp.
(b) Mr. Hanson with a section of 13 men,

One-and-half-inch mapping, sheets $43 \frac{\mathbf{O}}{8,12,16}, \frac{\mathbf{P}}{9,10,13,1+}$.
Mr. Morton was in charge of a Training section of 14 civilian pupil surveyors and 2 pupil soldier-surveyors who joined in June and July.

Mr. Vastav took over the training of the above pupil surveyors in July 1918, and also of 7 other pupil soldier-surveyors on their return from Quetta in the middle of September 1918.

The total out-turn of fair-mapping during the year was:-
(a) One-inch mapping $\quad . . \quad$... $2359 \cdot 8$ square miles.
(b) Three-inch mapping,-
(i) Akora Artillery Practice Camp ... $102 \cdot 7$ square miles.
(ii) Hoshiārpur Artillery Practice Camp ... $61 \cdot 4$ square miles.
(c) Four-inch mapping,-

Peshāwar military survey left over from 1916 -17 $\quad 171 \cdot 5$ square miles.
Cost-rates were as follows :-
One-inch mapping Rs. 10•8.
Three-inch mapping Akora Artillery Practice Camp ... Rs. 23.3.
Three-inch mapping Hoshiārpur Artillery Practice Camp
Rs. $33 \cdot 1$.
Four-inch mapping Peshāwar military survey
Rs. 17.9.
The following sheets were submitted for publication during the year: -
One-inch sheet $43 \frac{\mathrm{P}}{3,4, \mathrm{~B}, 12}$.
Three-inch ... Akora and Hoshiarpur Artillery Practice Camps.
Four-inch ... Peshāwar military survey.
The following still remain to be submitted :-
One-inch sheets $43 \frac{0}{8,12,16}$ (in hand),

$$
\begin{aligned}
& 43 \frac{P}{5,6,7,0,10,11,15,14,15} \text { (in hand), } \\
& 53 \frac{4}{1,2,3,4,6,6,7}
\end{aligned}
$$

The Yāru and Bostãn surveys were only completed at the end of September 1918, and plane-tables have not been received from the field.
6. Inspections.- The Surveyor General inspected the party in recess in September 1918.

No. 2 PARTY (RAJPUTANA, UNITED PROVINCES AND DELHI PROVINCE).
By Lr.-Colonel E. A. Tandy, R. E. (Information supplied by Mr. H. P. D. Morton).

Personnel.
Provincial Officers.
Mr. T. W. Babonau in charge to 4th July 1918.
" H. P. D. Morton in charge from Sth July 1918.
" R. E. Saubolle.
, J. H. Johnson.
, J. A. Colvert.
, Duni Chend Puri.
Upper Subordinate Service.
Mr. Ghulam Hesan.
, Daulat Ram Vohra.
Lower Subordinate Service
21 Surveyore etc., in the field.
11 Draftamen employed on fair-mupping during the field engon,
21 Surveyors etc., on an average, in Recess, excluding absentees.

The field pragramme was as follows:-
(a) Continuation of the topographical programme on the half-inch scale in the Rājputāna States of Jaipur and Alwar.
(b) Survey on the three-inch scale of two Artillery Practice Camps, one at Roor. kee, and one at Tughlakābād about 14 miles south of Delhi.
(c) Supplementary Survey on the t-inch scale of the leased Forests of TehriGarhwàl.
(d) Triangulation and boundary traverses in the Jaunsär-Bāwar Forests of the Chakrātā Forest Division.
(e) Traverse of 20 linear miles of the Chalrätả Cantonment boundary.

Distribution.-Mr. Calvert was in charge of items (a) and (b) above, having a camp averaging 5 surveyors on the half-inch topography, and another of similar size for the two Artillery Practice Camps; besides which he himself had to carry out the supplementary triangulation and traverse required for Roorkee.

Mr. Johnson was in charge of the three remaining items, having 2 surveyors on the forest survey in Tehrī-Garhwàl, and an average of $\begin{gathered}\text { a traversers on the Jaunsär-Bäwar forest }\end{gathered}$ boundaries; while Mr. Ghulam Hasan carried out the Jaunsär-Bāwar triangulation and the Chakrātā boundary traverse under his direction.

Besides the above a drawing section was maintained throughout the year at Mussoorie, in charge of Messrs. Sanbolle and Duni Chand Puri, to deal with the arrears of mapping, which included 5 sheets taken over from No. 4 Party.

Field Season.-Field headquarters opened at Delhi on the 30th October 1917, and closed at the end of April 1918; but the forest surveys in the hills were carried on till the end of June. The health of the party was satisfactory.

IIalf-inch Topography.-The detail survey was based on the triangulation and tra. verses executed during the previous season, and consisted in the completion of sheets $54 \frac{A}{2,5,6}$ and the whole of sheets $54 \frac{A}{1,4,6}$. The country was intricate, consisting of narrow cultivated plains separated by small rocky ranges rising abruptly about 1,000 feet above the plains and mostly covered with dense brush-wood and stunted trees. Thongh good fixings were obtainable, they were difficult of access, and the out-turn was not large, amounting to $1,286 \mathrm{~s}_{\mathrm{g}}$ uare miles, at a cost-rate of $\mathrm{Hs} .9 \cdot 8$ per st 9 uare mile.

The Artillery Practice Camps consisted mostly of flat or undulating cultivation, that at Roorkee being intersected by streams from the Siwāliks, and that at Tughlakäbad by low outcrops of bare rock. The areas were 133 and 54 square miles respectively.

The Roorkee survey was based on old district traverses of 1877-78, supplemented by 40 square miles of triangulation and 54 linear miles of traverse, the cost-rates of which were Rs. $53 \cdot 5$ per square mile and Rs. $13 \cdot 7$ per linear mile respectively.

The triangulation and traverse heights were based on a G. T. Bench-Mark; the friangulation was based on a measured base-line and closed by traverse on to old triangulation.

The 'Tughlakābād survey was based on triangulation executed by No. 3 Party in 1910-11.

The average cost-rate for these two surveys on the 3 -inch scale was lis. $50 \cdot 5$ per square mile, excluling the cost of the supplementary triangulation aud traverse work at Roorbee mentioned above.

Leased Forests of Tehri-Garhwäl.-The following old forr-inch sheets of these forests were brought up-to-date in respect of roads, chaks, etc., and in some cases re-contoured, for the Forest Department:-

Sheets $222 \frac{\text { s. E. }}{2,3,4}$ and $\frac{\text { N. E. }}{4} ; 223 \frac{\text { K.E. }}{2} ; 226 \frac{\text { N.W. }}{3,4}, \frac{\text { E.W. }}{1,2,4,4}$ and $\frac{\text { S. E. }}{1} ; 227 \frac{\text { N.W. }}{1,2,3}$.
The country consisted of forest-covered Himalayan foot-hills reaching to altitudes of from 5,000 to 10,000 feet. The area was 144 square miles and the cost-rate Rs. $28 \cdot 3$ per square mile.

Iriangulation and I'raverse of Jaunsär-Bäwar Forests.-The existing triangulation covering the old Jaunsār-Bāwar two-inch sheets 1 and 2 was supplemented to give further points for the proposed t-inch survey, and closing points for the boundary traverses. This supplementary triangulation covered 156 square miles, and the cost-rate, including that of computation, was Rs. $49 \cdot 8$ per square mile.

The traversing was carried along 175 miles of the boundaries of the Deogarh, Bawar, and Deoban Rauges of the Chakrāta Forest Division, and was in every way unfortunate. In the first place the work was much hampered by difficulties of transport and supplies, and by the attempt to carry it through in the same seasou as the triaugulation on which it had to be closed, and without having the buundary lines first cleared by the lorest Department.

Apart from these natural dilliculties, traversing in such steep and thickly-wooded bills requires expert traversers and chainmen; and owing to the depleted state of the Department neither of these were obtainable. The chainmen were untrained coolies, and the traversers inferior workmen with no previous hill experience.

As a result much revision was necessary, sometimes more than once, and traversers went sick out of fear of the hills, and others procured in their place were little better. So that with an average of 5 traversers only 175 linear miles of traverse was done, at an average cost, including computation, of hs. $98 \cdot 1$ per linear mile.

As we have no prospect of getting better traversers in the near future, and as bearings and distances of boundaries are not very useful in this soct of country, we have advised the Forest Department to dispense with further traverse work on these boundaries. The remainder will therefore be determined by plane-table, in conjunction with the 4 -inch survey now to be commenced by No. 3 Party, to whom this work is being transferred.

The Chalerätä Cantonment Boundary traverse was carried out at the request of the Cantonment Magistrate, Chakrātā, with a view to amending the boundary Notification and laying down intermediate pillars. The 20 linear miles iucluded 296 theodolite statious, and the cost-rate was Rs. $49 \cdot 6$ per linear mile.

Recess Duties.-(a) The arrears of fair-mapping, which were dealt with by the drawing section left in Mussoorie during the field season, and in conjunction with current work during the recess, were as follows:-

Four four-inch sheets of Delhi and vicinity.
Five one-inch sheets in 53 D and 54 A .
Two half-inch sheets in 54 A .
Five one-inch sheets in (63 M and N (from No. 4 Party).
The following sheets were completed and submitted for publication during the year:
(i) Four four-inch sheets of Delbi and vicinity.
(ii) Five three-inch sheets of Roorkee and Tughlakābäd.
(iii) Six one-inch sheets, $54{ }_{i}^{\mathrm{A}}$ and $63{ }_{4}^{\mathrm{M}}, \frac{\mathrm{N}}{1,2,5,6}$.
(iv) Four half-inch sheets.
(v) Four one-inch sheets were also completed and nearly ready for submission by the end of September, thus bringing the fair-mapping of the party nearly up-to-date.
(b) Other recess duties included the computation of the supplementary triangulation and boundary traverses of the Jaunsār-Bāwar forests.
Inspections.-The party was inspected once by the Surveyor General, and on several occasions by the Superintendent, Northern Circle.

No. s PARTY (UNITED PROVINCES).

By H. H. B. Haney.

The party in reduced strength arrived in Bareilly, which was again the field headquarters, on tst November 1917 and returned to

Prrbonnil.

Prooincial Officers.

Mr. H. H. B. Heaby in charge.
, E. J. Biggie to 5th May.
" A. M. Twlati.
, G. B. R. Cooper.
," Moqimaddin.

Upper Subordinate Service.

Mr. Mobammad Husain.
, A. A. S. Matlub Ahmed.
Lower Subordinato Seroice.
14 Sarveyors, \&e.
(ii) Survey on scale 4 -inches $=1$ mile in sheets $53 \frac{0}{11 \text { (part), } 12 \text { (part), } 15 \text { (part), } 16 \text { (part) }}$.
(iii) Survey on the scale 2 -inches $=1$ mile in sheets $53 \overline{\overline{1}, \overline{2}(\overline{p a r t}), \frac{0}{5,6(\text { purt }), ~}, \mathbf{1 0}(\text { (part) })}$.
(iv) Surves on the scale 3 -inches $=1$ mile in sheets $63 \frac{\mathrm{~K}}{13(\text { part })}, 63 \frac{\mathrm{~L}}{9(\text { part })}$ of the Kutwa Artillery Practice Camp.

It was first decided that a contour interval of 50 feet would satisfy military requirements in the area that was to be surveyed on the scale of 3 -inches to a mile, but on completion of the work fresh orders were issued and a vertical interval of 25 feet was decided upon. This cbange involvel the loss of a month. Then the health of the party was not very good, and owing to sickuess among the surveyors, no work in sheets $53 \frac{0}{5,9,10}$ could be taken up.

The work was distributed among four camps under Messrs. E. J. Biggie, A. M. Talati, Moqimuddin and surveyor Jit Singh.

In the month of May 1918, Mr. E. J. Biggie was transferred to the Eastern Circle, and Mr. Moyimudlin took charge of his camp in addition to his own.

The party's out-turn on all scales was 717 square miles.
$\begin{array}{lllrll}\text { (a) Revision surver on l-inch scale } & 105 & , & " \\ \text { (b) Survey on } 2 \text {-inch scale } & \ldots & 459 & " & " \\ \text { (c) Surver on } 3 \text {-inch scale } & \ldots & 31 & " & " \\ \text { (d) Survey on t-inch scale } & \ldots & 122 & " & "\end{array}$
The cost-rate of (a) was R s. $2: \cdot 1$ per square mile.

$$
\begin{array}{llllllll}
" & " & "(b) & , & \text { Rs. } 6.5 \cdot t & , & " & " \\
" & " & "(c) & " & \text { Rs. } 5 \delta \cdot t i & " & " & " \\
" & " & "(d) & , & \text { Rs. } 58 \cdot 5 & " & " & "
\end{array}
$$

Triangulation.-The total area triangulated during the year under report anounted to 1,122 square miles. Of this, 30 spuare miles were executed for the 3 -iuch survey in district

 2 -inch and 1 -inch survers in future years.

The whole area of $1,1 \geqslant 0$ square miles was triangulated by computer Bal Krishna.
The enst-rate of triangulation for 3 -inch survey was Rs. $5 \cdot 2$ per square mile.
The computation of triangulation for 2 -inch and 1 -inch work has not been completed:
Trarersing-Uuder this head 315 linear miles were executed in all, 25 linear miles being for t-inch special forest survey, and 290 linear miles for future survers on scale 1 -inch $=1$ mile.

The cost-rates of traversing
for 1 -inch survey was Rs. $18 \cdot 7$ per linear mile.
" 1 -inch ", Rs. $59 \cdot 1$,", ",
Recess Dutien.-(a) The fair-mapping was divided into two sections under Messrs. G. E. R. Cooper and Moqimuddin.

Mr. Cooper, assisted by Mr. Muhammad Husain, Sub-Assistant Superintendent, supervised the mapping of last and previous year's arrears, which included four half-inch sheets, 8 two-inch sheets, $53 \frac{\mathrm{~K}}{5} \mathrm{~N} \& \mathrm{~S}, 53 \underset{9}{\mathrm{~K}} \mathrm{~N} \& \mathrm{~S}, 53 \frac{\mathrm{~K}}{19} \mathrm{~N} \& \mathrm{~S}$, and $53 \frac{\mathrm{~K}}{14} \mathrm{~N} \& \mathrm{~S}$, and five one-inch sheets $53 \underset{\mathrm{i} 0}{\mathrm{~K}}, 53 \frac{0}{3,4,7,8}$. Mr. Moqimuddin supervised the fair-mapping of sheets $53 \frac{0}{1} \mathrm{~N} \& \mathrm{~S}, 53 \frac{\mathrm{O}}{2} \mathrm{~N} \& \mathrm{~S}$, and the 3 -inch map of the "Kutwa" Artillery Practice Camp. Of the two-inch sheets, $53 \frac{\mathrm{~K}}{5} \mathrm{~N}$ \& S have now to be completed to,margin, $53 \frac{\mathrm{~K}}{14} \mathrm{~N}$ has to be redrawn to admit of reduction to half scale, and $53 \frac{\mathrm{~K}}{14} \mathrm{~S}$, which was originally drawn as an outrigger to $53 \frac{\mathrm{~K}}{14} \mathrm{~N}$, has to be prepared as a separate sheet and completed to margin. $53 \frac{\mathrm{~K}}{14} \mathrm{~N}$ was formerly mapped for reproduction only. The object with which the aforementioned sheets are being completed to margin is to meet the requirements of the Forest Department.

The fair-mapping of sheet $53 \frac{\mathrm{~K}}{5}$ on the $1 \frac{1}{2}$-inch scale was abandoned. When sheets $53 \frac{\mathrm{~K}}{\bar{\sigma}} \mathrm{~N} \& \mathrm{~S}$ have been completed, a one-inch edition can be prepared from reductions of these two sheets.

None of the sheets surveyed during the year under report have as yet been completed for publication. The following sheets however will be submitted for publication during the next two months:-
$53 \underset{3,4,7,9}{0}$, and the "Kutwa" Artillery Practice Camp map.
For want of men no progress could again be made on sheets $53 \frac{\mathrm{~K}}{\mathrm{~N} \cdot \mathrm{~W}}$ and $\frac{\mathrm{K}}{\mathrm{N} \cdot \mathrm{E}}$.
(b) The computations of the following areas were completed:-
(i) 1,043 square miles of triangulation for 2 -inch survey, intersected points (arrears).
(ii) 290 linear miles of traversing for 1 -inch survey.
(iii) 25 , " ", 4-inch survey.

No triangulation charts have been drawn, and the computation of 1,092 square miles triangulated during the year under report has still to be undertaken.

Miscellaneous.-Two draftsmen received training in hill surveying.
Inspections.-The party was inspected fortnigbtly by the Superintendent Northern Circle and once by the Surveyor General.

SIND-SAGAR PARTY (PUNJAB).

By Dhani Ram Verma.

The programme of the party consisted in the execution of network triangulation as a

Perbonnel.

Imperial Officer.

Lieut. Colonel H. L. Crosthwait, R. E., in charge to 21st April 1918.

Prodincial Officers.

Mr. Dhani Ram Verma, attached from 21st. Octoher 1917 and in charge from 22nd April 1918.
" J. C. C. Lears.
„, F. J. Grice.
Upper Subordinate Service.
Mr. Chuni I,al Kapur.
, Muhammad Hnanin Khan.
" Nabidad Khan.
Lower Subordinate Service.
26 Survejore, etc.
preliminary to the rectangular survey for the purposes of canal alignment, colonization, and the preparation of a record of rights, in the area situated between the Iadus and Jhelum, and Chenāb rivers, commonly known as the Sind-Sāgar Doāb, lying within the limits of Miannāli, Shāhpur, Jhang and Muzaffargarh districts in the Puajab.

The triaugulation was undertaken at the request of the Punjab Government in connection with the Sind-Sãgar Doāb canal and colonization project, for laying out on the ground temporary marks to be eventually used in the location of the true corners of 1,000 -acre rectangles, of dimensions 15,840 feet north and south by 1,1000 feet east and west, to be finally subdemarcated iuto 100 -acre rectangles of dimensions 1,980 feet north and south by 2,20 () feet east and west.

The general nature of the country is that of a vast rolling desert of sand dotted over with sand hillocks. A large portion is treeless but parts are wooded, trees generally confining themselves to the strips of land between the hillocks.

The recess office of the party closed at Mussoorie on the 121 h October 1917, and the field heal-quarters opened at Miānwali on the 29th Octoher 1917. The office at Miannwali was closed on the 8th April 1918, and the recess office was opened in Mussoorie on the 18th

April 1918. The section under Mr. F. J. Grice continued field operations till 20th April, and returned to Mussoorie at the end of the month.

The health of the party during the field season was satisfactory.
Triangulation.-The area for triangulation embraced the following sheets:-

The party was divided into three triangulation camps under Messrs. Dhani Ram Verma, J. C. C. Lears and F. J. Grice.

No. 1 Camp.—Under Mr. Dhani Ram Verma, assisted by Mr. Chuni Lal Kapur, with 8 surveyors, triangulated an area of 2,552 square miles in sheets Nos. $38 \frac{\mathrm{P}}{15(\mathrm{pmrt)}, \mathrm{E16}}$;

No. 2 Camp.-Under Mr. J. C. C. Lears, assisted by Mr. Muhammad Husain Khan, with 8 surveyors, triangulated an area of 1,650 square miles in sheets Nos. $38 \overline{4,7,8 \& 11(\text { parts }), ~ \& 12}$;

No. 3 Camp.-Under Mr. F. J. Grice, assisted by Mr. Nabidad Khan, with 7 survegors, triangulated an area of 3,228 square miles in sheets Nos. $39 \frac{1}{15 \text { (part) }}$; $39 \frac{\mathrm{M}}{3 \& \downarrow \text { (parts), } 6 \text { to } \mathrm{B}, \text { and } 10 \text { to } 12} ; \& 39 \frac{\mathrm{~N}}{1 \text { to } 4 \text { (parts), } 5,8,7,8,10 \& 11 \text { (parts) }}$.

In the earlier part of the field season, Mr. Muhammad Husain Khan was employed in distributing stakes to centres throughout the area, and rejoined No. 2 Camp in the middle of December 1917 on the termination of this duty. Surveyor Hazara Singh was lent to No. 15 Party (Triangulation) to assist in building stations and rejoined No. l Camp at the begimning of January 1918. Surveyor Abuzar Khan was employed in recruiting khalasis for the party and rejoined No. 3 Camp at the end of November 1917.

The country triangulated is locally known as "Thal" (sandy desert). The entire tract is sandy, studded with hillocks (" tibbas") assuming generally a north-east and sonth-west direction, and alternating with narrow strips of land called "Luks" or "pattis". The eastern portion of the "Thal" which is designated as "high Thal" or "grazing Thal" is distinguishable from the western portion called the "agricultural Thal", by the unculturable and more or less bare sand hills which are higher and more numerous. The country is sparsely inhabited, the population is mostly rural and pastoral. The northern part of the "Thal" is extensively cultivated and the southern part has scattered cultivation on wells in the "pattis".

On the formation of the party, surveyors were given a preliminary training in reconnaissance and observation in recess, but it was found necessary to supplement this instruction by a practical training in the field when the party reached its field headquarters. This supplementary training was given over the open ground east of Kundiān railway station for about 20 days. In some cases backward men were placed with others for extra further training when actual field work was in progress.

The object of the triangulation carried out during the season was to fix stations and intersected frints as near as possible to the actual corners of 4,000 -acre rectangles. To locate such stations and points on the ground the one-inch maps which were available for almost the whole ground were utilisel as field charts. The values of the graticule corners of the sheets were computed as rectangular coordinates from the origin which had been chosen for the survey i.e. the intersection of the merilian of $71^{\circ} 30^{\circ}$ with the parallel of $31^{\circ} 30^{\prime}$ (this point falls near the centre of the figure of the area compriserd in the scheme), and were plotted on the one-inch maps and the rectangles ruled up in red. The stations of every fourth series of rectangles running east and west were made stations of observation, the stations of the intermediate series being intersected from three stations of observation. The east and west series were joined at intervals of about 20 miles by a north and sonth chain, the whole being tied to a continnous series skirting the outer limits of the area. All the series arranged consisted of quadrilateral ligures. With the rectangles marked on his one-inch maps the surveyor carried out his reconnaissance, which consisted in locating on the ground by interpolation, with the aid of such detail as was available, a position for his station or intersected point as near as possible to the actual corner of the rectangle plotted on his one-inch sheet. Having reconnoitred and fixed at least 8 stations in this way, he proceeded to observe the network thus formed, using the signals and stakes described below. The inexperience of the staff in work of this kind, and the hazy atmosphere in November necessitated the reduction of the size
of the series to 2000 -acre rectangles. As the men became familiar with the work, and as the atmosphere and the nature of the country permitted, large series were resumed. But the ground in the north-western portion of the tract was not favourable for large series at all on account of the jungle on the hills.

Statious and intersected points were marked by creosoted stakes, 30 inches loug and 3 inches square in section and pointed at one end, which were driven into the ground, 9 inches being exposed. With a view to the recovery of the stakes in the case of their being obscured by drift of sand, and as a precaution against damage to or removal of stakes, clods of earth were piled around them and tripods made of stout branches of trees were erected over them and firmly fixed into the ground. All stakes were placed in the custody of the lambardars of villages, receipts being taken for the number made over to them.

The signals used were 20 and 30 feet high, made up of "chir" wood poles 10 feet long with single or double socket joints according to the height of signal, surmounted by a strong white cloth top and plumbed by means of 4 guy ropes fixed to the lower ring of the hoop. From experience it was found that the ropes soon became loose and the pole knocked out of the vertical. This was due to the fact that the pegs of the guy ropes could not hold in the sand to ensure stability. The 30 feet or double jointed signal was useful to overcome obstacles on the ray such as trees or hamlets. The double joint had a tendency to weaken the pole, which could not always sustain the strain imposed on it; when erecting the signal broke easily. The great disadvantage of this signal was that it never kept vertical, it oscillated in the air, and consequently steady intersection of the signal could not be made in the telescope.

Reconnaissance was carried out without much line-clearing except in the very densely wooded portions of the country such as that around Khushāb. It was invariably possible to locate stations on the tops of sand dumes as the hill tops were generally bare. Work progressed under exceptional weather conditions, more rain fell during the winter than has hitherto been recorded for that period of the year, but notwithstanding this in the afternoon the atmosphere was hazy enough to prevent opaque signals being used at a greater distance than $3 \frac{1}{2}$ miles. On account of the hot vapours arising from the desert, the signals became so magnified that reliable intersection could not be obtained. All these atmospheric conditions necessitated the observations for base connections with secondary series having rays about 7 miles long to be taken early in the morning or late in the evening.

The triangulation was connected with secondary series executed by No. 15 Party (Triangulation) at frequent intervals, to obtain values for sides and bearings and for checking and distributing errors, altogether 67 bases were connected and 87 stations for coordinate values. The connections were made by officers with 6 -inch transit theodolites (3-vernier) reading to 10 seconds.

The surveyors used 5 -inch and 6 -inch vernier theodolites, reading to 30 seconds and 20 seconds respectively, for observing horizontal angles; no vertical angles were observed as the party was not concerned with the determination of altitudes.

The thickly wooded area of about 378 square miles in sheets $39 \frac{\mathrm{I}}{10 \text { (part) }}, 39 \frac{\mathrm{~J}}{13 \& \mathrm{I} \text { (parts) }}$, $39 \frac{\mathrm{M}}{4}$ and $39 \frac{\mathrm{~N}}{103}$, in which triangulation was impracticable was left over for traversing next field season. With this exception the programme laid down for the field season was completed. The total out-turn of triangulation was 7,430 square miles, the average monthly out-turn per man was $80 \cdot 2$ square miles. The total number of points trigonometrically fixed was 1888.

The average cost-rate of triangulation including computation was Rs. 15/- per square mile, or $4 \cdot 5$ pies per acre.

Recess Duties.-The computation of the triangulation completed was distributed as follows:-

No, 1 Section.—Under Mr. J. C. C. Lears, sheets $38 \frac{\mathrm{P}}{4, \bar{i}, \mathrm{Q} \& 11(\mathrm{parts}) \& 12}$; and

 $39 \frac{\mathrm{~N}}{0 \& 13 \text { (parita) }} ; 43 \frac{\mathrm{D}}{3,4,7 \& \pm \text { (parta) }} ;$ and $44 \frac{\mathrm{~A}}{1 \text { to } 4 \text { (parts) })}$.

All the computations of the triangulation done during the field season were completed by three sections. The chief point in computation worth mentioning is that the rectangular co-ordinates of the stations and intersected points were worked out by Gale's traverse system, using the lengths of sides and the angles from the computation of triangles; 15 intersected points have not proved, they will be retriangulated next field season.

The average errors of connection work and net-work are shown in the annexed table:-

Nature of wori.	Mean Triangular error in seconds.	Avoruge Linear error per mile in foet.	Avorage closing error in distance on meridian in 1,000 .	Average closing error in distunce on perpendicular in 1.000
Conuection work	$6 \cdot 7$	$0 \cdot 12$	\ldots	\ldots
Net-work stations	$17 \cdot 1$	0.22	$0 \cdot 11$	0•12
" points		$0 \cdot 63$	\ldots	

Manuscript triangulation charts for Degree sheets $38 \mathrm{P}, 39 \mathrm{I}, 39 \mathrm{M}, 39 \mathrm{~N}, 43 \mathrm{D}$ and 44 A have been prepared, the fair charts will be prepared next year; the preparations for the field seasou have taken up a good deal of time during the recess owing to the very large number of 4,000 -acre plots having to be prepared.

Triangulated points were plotted on 4,000 -acre rectangle prints on the scale 6 inches to 1 mile. They were examined and inked up and other necessary data were entered on them for the guilance of the surveyors and the patwaris in demarcation. One set of 1,257 plots was completel. The duplicate set is expected to be ready before the party takes the field.

Miscelluneous.-(a) Almostall the transport of the Sind-Sãgar Doāb is done by camels, which can be oltained in the villages but not without difficulty. With the exception of the Jhang- Bhakkar road which runs across the desert, the country has no other road. There are numerous camel paths but these are obliterated in a storm and are uncecognisable after a shower of rain. There are wells at the villages aud scattered about the desert, but their water is generally brackish and bitter. Supplies are difficult to obtain, there are some large villages in the interior, but they are far between and are only centres of indigenous trade. Previous arrangements through the district authorities are necessary. There are Government Rakhs in the "Thal", but they are patches of waste land leased for grazing and are almost treeless.
(b) Mr. Muhammad Husain Khan and surveyor Muhammad Yakub Khan who had been sclectel for the Eastern Persia Survey Party were trained by Mr. Chuni Lal Kapur in astronomical observations for latitule, azimuths and time, and in their computation for about a fortnight in September.

Inspections.-The Superintendent, Northern Circle, inspected the party frequently in recess. The Surveyor General inspected the party in September 1915.

RIVERAIN DETACHMEN'T.

Bi Mara Das Pumi, Rat Sahb.
The field operations were started on the 1st October 1917, and were closed carly in
lebsonnet.
Roviacial Ofīer.
Mr. Maya Das l'uri, R. s., in marg. .
Cilur Sumordinate Service.
Mr. Paras Brm.
" Ham Naragan Hastir from the 4 th Spptemlier 1014
, I Lakhmi Dutt Ioshi.

- Fhiga Dhor Chopra.

1 Nuib Tahsildeir (Nettiement alaff)
Loreer Suhordinnte Service.
ic Surreyors, Travereers, etc.
1 Künago (Bctilement establishment) from the 29h la lay 1919.
the final examination of the Kangra computation records.

July 1918. The heal-ruarters of the detachment remained at Campbellpore till the J2th $\Lambda_{\text {pril }} 1918$, after which it was shifted to Jhelum where the oflice opened on the 22nd April 1918.
2. The detachment was dividerl into four camps and four sections. The former consisted of 12 to 14 traversers each, and the latter varied in strength according to requirements.

The assistants supervised the work as follows:Mr. Paras Ram. No. 1 Camp; (Indus) for the first $3 \frac{1}{2}$ months. The Indus boundary compilation for the remaining part of the year.
Mr. Lakshmi The plotting and the boundary Dutt Joshi. compilation of the Ravi, and

Mr. Vidya Dhor Chopra. No. \% Camp (Indus). The plotting of the Indus. The training of new hands, and miscellaneous duties.

Munshi Ganda Singh, Nä̀b Tahsildār.

Habu Ishwar Singh, Surveyor.
Computer Badlu Ram,

No. 3 Camp (Indus), during the field. Correspondence, and accounts during recess.
No. 4 Camp (Rāvi \& Sutlej), and the examination of instruments.
Computing Section.
3. The detachment continued the work of traversing and laying down jase lines. 440 linear, and 706 square miles of main circuits; and 3, 904 linear, and 762 square miles of minor traverses were run; and 780 theodolite stations of the former and 16,282 of the latter, were fixed in the area under water action of 2.51 villages of the rivers Indus, Rēvi, and Sutlej in districts Dera Ghāzi Khàn, Muzaffargarh, Multān, and Bahàwalpur State. 519 corners of 173 squares were demarcated in 1,181 square miles with permanent mark-stones on both banks of the Indus and the Raivi, to serve as bases for the future survey and demarcation of boundaries and fields in the beds of the rivers. Some of the base lines on the Indus could not be Gixed and were postponed to next season on account of the sites having been covered with water due to floods.

2, 935 plotted, and 816 boundary masaivis (Settlement mapping sheets) on the scale of $\frac{1}{2640}$, and 40 four-inch sheets were traced, and supplied to the Settlement Officers. Besides these, 377 miscellaveous traces were prepared, and all the traverse stations marked during the year were plotted on 58 four-inch sheets. The computation volumes yet remain to be completed due to the period of the recess being very short.

Some of the Kängra computation volumes have been completed, and work in some still remains to be done. Two candidates of the Gwalior State were trained in traversing and computations from the 23rd March to the 30th September 1918.
4. The following tables give full details of the riverain work completed during the year :-
(1) Field work.

		Maincticeuti.			Minol TRayensefoll De:rall Sumyfy.				Hase Lines.			
Names of Rivers, Districta and Scaies												Remares.
	J20	252	122	210	606	3,304	13,650	187	485	165	1,173	
	40	\ldots	\cdots	\ldots	156	600	2,6il2	64	24	8	8	
	55		318	570	\cdots	\ldots		\ldots	.	-	\ldots	
Tolal	215	708	$440{ }^{-}$	780	782	3,704	$\overline{16,282}$	251	510	173	1,181	

(2) Office work done for the cadastral shiveis of mueiain estates.

Name of river.	Name of district.	Scale of masãves	Number of plotted masãvis showing trarerserd poinis.	Number of compiled masābis showing riverain boundaries.	Number of sheets traced for the use of Sel.tlement Officers on scale 4 inches to a mile.	Number of 4 -inch sheets on which now work was plotted.
Indus	Dera Ghnizzi Khãn	$\frac{1}{2,640}$	2,342	674	31	4.7
Rāvi	Multinn	"	593	142	9	11
	Total		2,935	816	40	58

Besides these, 377 miscellaneous traces were prepared.
5. Much trouble was experienced early in the season due to fever prevailing along the Indus, and for want of khalasis, as sufficiont men could not be had locally, and definite orders regarding recruitment from other districts, and the enhanced rates of their pay were not received till the 8 th October 1918. Besides these, there were various other difficulties which hampered the progress of work, such as the constant changes in the Settlement Officers' demands; crossing and recrossing the Indus at various places for throwing points on islands and isolated spots in the bed of the river; the clearing of extraordinary heavy jungle along the Indus; and the scarcity of transport, supplies, and labour, on account of the military expedition against the Marris in the Ilera Ghāzi Khān district.
6. The riverain area under water action was usually broken, full of swamps, shrubs, high grass, and sand; and was in parts densely wooded. Large isolated plots in the bed of the Indus, and portions of villages above the high banks were open, flat, and we!l cultivated.
7. Those members of the detachment who were employed along the Indus during October, November, and December 1917 suffered badly from fever due to heavy floods in September 1917. The health of the other members was fairly satisfactery. One surveyor, one draftsman, and one khalasi died.
8. The Indus main circuits were connected with Kambar Shäh T. S. XC; and those of the Sutlej with Josar T. S. XXVIII, Tāmiwāli Platform Station XX, Shekhwahān T. S. XXII, Ghallū T. S. XXIV, Jiwan T. S. XXVI, and Mandresa 'T. S. XXX.
9. The average errors were as follows:-
(a) Base-lines $0 \cdot 8 \cdot 4$ foot per corner when compared with the theoretical values.

				$\begin{aligned} & \text { Angular } \\ & \text { Aroror per } \\ & \text { stato } \end{aligned}$ $\begin{aligned} & \text { Btation } \\ & \text { second. } \end{aligned}$ second	Linent error in links per ted chans.
	Main circuits				
	Indus	\ldots	...	2.57	$0 \cdot 14$
	Sutlej	\ldots	\ldots	$3 \cdot 27$	$0 \cdot 33$
	Minor traversc				
	Indus	\ldots	...	9.27	$0 \cdot 57$
	Rävi	$7 \cdot 87$	0.55

10. The total expenditure of the detachment from the lst October 1917 to the 30 th Sertember 1918 was Rs. $1,09,132 /-$.

SOUTHERN CIRCLE.

(Vide Index Map 2).

Summary.- This Circle was under the superintendence of Colonel T. F. B. RennyTailyour, C. S. I., R. E. throughout the year and comprised Nos. 5, 6, 7, 8 and 20 Parties, No. 4 Drawing Office, the Training Section and the Salonika Survey Detachment.

During the year Nos. 5, 6, 7 and 8 Parties completed 12,589 square miles of detail survey, 11,878 square miles of triangulation and 836 linear miles of theodolite traversing.

The detail survey consisted of :-

No. 20 Party surveyed an area of 26,841 acres in cantonments and military stations.
Owing to the great shortage of supervising officers on account of the war, topographical survey operations were considerably curtailed. Nos. 6 and 7 Parties took the field with a full strength of surveyors but the majority, including the head-quarters, of Nos. 5 and 8 Parties, remained at Bangalore throughout the year, and were principally employed on the fair-mapping of $\frac{1}{9}$-inch sheets compiled from published sheets of the 1 -inch map.

The Training Section carried out detail survey on the $1 \frac{1}{2}$-inch scale in sheets $57 \frac{1}{10,14}$. 17 pupil surveyors received instruction in detail surveying.

The following work was undertaken in the Photo.-Zinco. Section of No. 4 Drawing Office:-

Reproductions	\ldots	\ldots	120
Enlargements	\ldots	\ldots	107
Reductions	\ldots	\ldots	167
Sheets vandykel	\ldots	\ldots	135
Copies printed	\ldots	\ldots	$4,2.19$

NO. 5 PARTY (BERAR, BOMBAY AND CENTRAL PROVINCES).
By P. R. Anderson.
This party took the field in reduced strength and completed the detail survey on the l-inch scale of sheets $55 \frac{\mathrm{C}}{\pi, 12,15,18}$ and on the 3-inch scale of the Royal Artillery Practice Camps of Aunch in sheets $47 \frac{\mathrm{~F}}{\mathrm{io}, 14}$ and of Barelā in sheet
($+\frac{A}{4}$. The party also completed the triangulation of sheets $55-\frac{N}{2,3,6, i, 10,14}$ and $64 \frac{13}{1,2,5,8}$.

The general nature of the country surveyed on the 1 -inch scale is well cultivated fertile fields and intricate jungle-clad hills.

The field season opened on the 1st Novem-
Mr, P. R. Anderson, in churge.
, Hıji Abral Rnhim, K. B.
Upper Subordinate Service.
Mr. Jamodar Kliadilknr.
Lourv Subordinale Service.
27 Survegors, ete.
ber 1917 and closed on the 20 th April 1918 . The field head-quarters of the party remained at Bangalore throughout the year.

Consilering the malarious tracts in which the party worked and the high price of food throughout the season, the liealth of the party was grood. There were no deaths.

Planc-tabling.- The nature of the country surveyed is varied. The l-inch detail survey covered those portions of the rich and fertile valleys of the Pūrua and Tapti rivers, and the intricate and jungle-clad Griwilgath range separating them, which fall in sheets $55 \frac{\mathrm{C}}{11,2,15,16}$;
the original survey being confined to the plains and the revision survey to the hills. The 3-inch detail survey comprised the Royal Artillery Practice Camps of Aundh and Barelā. The camp of Aundh lies about 6 miles north-west of Poona and covers the undulating plaing, steep-sided flat-topped hills and confined valleys of the basins of the Pauna and Muta rivers in sheets $47 \frac{\mathrm{~F}}{10,14}$. The camp of Barelā, falling in sheet $64 \cdot \frac{\mathrm{~A}}{4}$, covers a tract of embanked fields, wooded and undulating plains and rocky jungle-clad hills round about Barelã which is a large village 10 miles south-east of Jubbulpore on the Mandlá road.

The field work was divided between two camps:-
No. 1 Camp.- Under Mr. Anderson, consisted of 3 surveyors and completed the detail survey on the 3 -inch scale of the camps of Aundh and Barela.

No. 2 C'amp.— Under Mr. Haji Abdul Rahim, K.B. assisted by a senior surveyor, consisted of 9 sarveyors and completed the detail survey on the l-inch scale of sheets $55_{\frac{\mathrm{in}, 12,10,16}{}}$.

There was also a surveyor under Mr. Anderson detailed to survey, on to the original plane-table sections, new railway lines in sheets 55 H and 55 J .

The l-inch original survey presented no great difficulties. The portion falling in $55_{12,16}$ was surveyed by beginners under a senior surveyor and proved a good training ground. The l-inch revision survey was carried out on vandyked reductions of previous f-inch surveys, which proved to be very reliable. The 3-inch detail survey (original survey of Aundh and resurvey of Barelā) was undertaken purely for military purposes. As there were a sufficient number of previously triangulated points to ensure an accurate and reliable graphic triangulation, this method was adopted, and a great number of points were fixed by the plane-table and their heights determined by the theodolite. Great attention was paid to the representation of tree growth and, as far as the scale would allow, this was depicted true to nature, care being taken to show the shapes of solitary and conspicuous trees. Where necessary certain contours were surveyed by means of the clinometer used as a level. The supplementing of new railway lines proved very easy as the original plane-tabling, done by Provincial Officers under training, was exceptionally accurate.

A total area of 1,214 square miles was completed. The total out-turn of I-inch original survey, of 1 -inch revision survey and of 3 -inch survey was 570,527 and 117 square miles respectively, the average monthly out-turn per man was $29 \cdot 1,48 \cdot 1$ and $9 \cdot 3$ square miles respectively, and the cost-rate per square mile was Rs. $20 \cdot 9$, Rs. $12 \cdot 6$ and Rs. $59 \cdot 0$ respectively. 112 miles of railway line were supplemented at a total cost of Rs. 326 .

Triangulation.-The country triangulated. lies entirely on what is known as the plateau of the Sātpuras. It consists of the mango-studded plains around Mandla and the ragged jungle-covered jumble of hills which enelose the tortuons rock-bound conrse of the Narbada river in sheets $6 \pm \frac{B}{1,2,5,5}$; of the Laknadon plateau, which is a well-wooded and rolling country
 which cousist of series of jungle-fringed platcaus separated by valleys and ravines in sheets $55 \frac{\mathrm{~N}}{2,3,6,7}$. Communications, throughout this tract of country, are bad and the population sparse.

The triangulation was divided between Mr. Damodar Khadilkar and surveyor Nur Muhammad. Mr. Damodar Kharlilkar completed an area of 1,379 square miles in sheets $55 \frac{\mathrm{~N}}{-14}$ and $64 \underset{\mathrm{i}, 2,2,5,6}{\mathrm{~B}}$, and the surveror completed an area of 1,374 s.pare miles in sheets $55 \frac{\mathrm{~N}}{2,3,6, \overline{7}, 10}$. The country had been previonsly triangulated, and whenever found the old stations were utilized. The total out-turn was $2,7 / 47$ square miles and the cost-rate per square mile was Rs. 5•3.

Recess Duties.-(a) The fair-mapping was divided among 3 sections:-
No. 1 Section.-Under Mr. Anderson was employed throughout the year on the $\frac{1}{2}$-inch

 the fair-mapping of 2 -inch state forest maps of the Hyderäbäd State.

No. 2 Section.—Under Mr. Haji Abdul Rahim, K. B. worked during the recess season only on 1-inch sheets $55 \underset{11,12,15,10^{\circ}}{\mathrm{C}}$

No. 3 Section.—Under Mr. Anderson worked during the recess season only on the 3 -inch maps of the camps of Aundh, Parelā, Kāpra (for No. 6 Party) and Rājankunti (for No. 8 Party).

Sheets $55 \frac{\mathrm{D}}{\mathrm{N.W}, \text { s. }} \frac{\text { W., N. E., S. E. }}{}$ and $55 \frac{\mathrm{a}}{\text { B. E. }}$ have been completed and submitted for publication, sheets $55 \frac{\mathrm{a}}{\mathrm{N} . \mathrm{E} .}$ and $55 \frac{\text { K. . }}{\text { N., s. W., N.E. }}$ have nearly been completed, and sheets
 sheets $55 \frac{\mathrm{c}}{\mathrm{n}, 12,15,18}$ is well advanced and should be completed by the end of the recess season. Of the 3 -inch maps, Aundh and Barelā have been submitted for publication, Kāpra is nearly completed and Rajjankunti is in hand.

A total area of 8,579 square miles was fair-mapped. The out-turn for the $\frac{1}{2}$-inch, 1 -inch and 3 -inch scales was $7,323,1,109$ and 147 square miles respectively, and the cost-rate per square mile was Rs. $1 \cdot 9$, Rs. $0 \cdot 9$ and Rs. $3 \cdot 4$ respectively.
(b) A computing section under Mr. Anderson was employed throughout the year. During the field season it computed sheet 56 H and part of sheet 56 L for No. 6 Party and completed the arrears in sheets 55 C and 55 F . During the recess season it computed sheets $55_{2,-\overline{3,6}, 10,-14}^{\mathrm{N}}$ and $61 \underset{1,2,5,6}{\mathrm{~B}}$, and during September it helped in the computations of No. 6 Party's triangulation.

Owing to the dearth of otlicers, due to the war, the preparation of the material for triangulation pamphlets has progressed very slowly: Sheets $460,46 \mathrm{P}, \mathrm{y} 4 \mathrm{~L}, 55 \mathrm{G}$ and 55 I are still in hand.

Miscelluneous.-Considering the rugged and mountainous nature of the country covered by the l-inch plane-tabling this year, the communications throughout were very gool. A well-planned system of cart-tracks, which took every advantage of the configuration of the land, has been laid out and maintainel by the Forest Department, and well-laden carts can travel anywhere. The question of clearing triangulation stations becomes acuter and more expensive year by year in the Central Provinces. As the conservation of forests becomes more thorough, the Forest Department is insisting on a scientific felling of trees. This means that either the triangulator has to lose time in personally superintending all hill clearing, or he has to entrust the clearing to his tindals and conseguently has to cut back badly felled trees on his return visits to stations. Each method is expensive, and arrangements are being made in the ensuing lield season to get the Forest Department to leud guards to superintend hill-clearing in all forest lands; it is hoped by these means to keep down expense.

No. 6 PARTY (HYDERĀBID AND MADRAS).

By J. O'B. Donaghey.
This party completed the detail survey on the $\frac{1}{2}$-inch scale of sheets $56 \frac{c}{9} \frac{c}{\text { to } 16}$ and

Perbonnels.
Provincial Officers.
Mr. J. O'l. Donaghey, in charge.
„ I. A. Meyer.
," Munshi Lal, B.A.
,, F. W. Smith.
" M. S. Qunese Aiyar.
Opper Subordinato Service.
Mr. Eknuth Battu.
" Rani Narnyan Bastir, to 22nd April 1918.
, K. Mandanna.
, Masud Khan.
Lower Subordinate Service.
34 Survegors, etc.
$56 \frac{a}{1 \text { to } 18}$, on the $1 \frac{1}{2}$-inch scale of scattered areas of state forests in sheets $50 \frac{A}{10,14}, 56 \frac{\mathrm{E}}{\overline{2}, \overline{2}, 11,12,15}$,
 the Royal Artillery Practice Camp of Kāpra in sheets $50 \underset{\mathrm{I} 0,11}{\mathrm{~K}}$. The state forests surveyed in sheets $56{ }_{-10,14}^{A}$ and $56 \underset{2, i, 1 i, 12, i 5}{E}$ and the area of the Kapra camp had been previously surveyed on the $\frac{1}{2}$-inclı scale.

The party also undertook the triangulation for detail survey on the $\frac{1}{2}$-inch and $1 \frac{1}{2}$-inch scales in sheets $56 \frac{1}{9 \text { to } 16}, 56 \frac{0}{3,4,7,8,11,12,15,10}$ and $56 \frac{\mathrm{P}}{1 \text { to } 8,9,10,15,14}$, for the 1 -inch scale in sheets $56 \frac{0}{12,16}$ and $56 \frac{\mathrm{P}}{19}$ and for the 3 -inch scale in sheets
$56 \frac{\mathbf{K}}{10,11}, 95$ linear miles of traversing was completed in sheets $56_{\frac{G}{6,7,10,11}}$.
The general nature of the country is hilly, interspersed with undulating cultivated arcas.
'Ihe ficld season opened on the 15th November 1917 and closed on the 15th May 1918. The field head-quarters was at Secunderäbäd.

The health of the party was on the whole grod, the head-quarters camp suffered somewhat from malaria which was prevalent in an epidemic form at Secunderābād. There were four deaths among the menials, two being from cholera while the men were on their way to join the party, one from old age and one from the effects of an accident.

Plane-talling.-The nature of most of the country surveyed is hilly and undulating, the undulating areas being cultivated; the south-western portion is almost flat and is highly cultivated. The state forest areas consist of wooded hills.

The work was divided among four camps as follows :-
No 1 Camp.- Under Mr. Meyer, with Messrs. Smith and Ram Narayan Hastir and 12 Surveyors completel the original survey on the $\frac{1}{2}$-inch scale of sheets $56 \frac{\dot{C}}{\beta \text { to } 16}$ and $56 \frac{G}{\mathbf{2}, 3,4,8}$,

No. 2 Camp.- Under Mr. Ganesa Aiyar, with Messrs. Mandanna and Masud Khan and 10 surveyors completed the original survey on the $\frac{1}{2}$-inch scale of sheets $50 \frac{a}{1,5,6,7,9 \text { to } 16}$, excluding state forest areas surveyed by No. 3 Camp.

No. 3 Camp.— Under Mr. Munshi Lal, with 6 surveyors was employed on the original survey and resurvey on the $l \underline{t}$-inch scale of scattered areas of state forests in sheets $56 \frac{\mathrm{~A}}{10,14}$, $56_{\frac{E}{2,711,12,15}}, 56 \frac{a}{6,7, \overline{10}, 1,12,15,16}$ and $36 \frac{1}{3,4}$.

No. 4 Camp.- Under Mr. Donaghey, with 2 surveyors carried out the resurvey on the 3 -inch scale of the Kappra camp in sheets $56 \frac{\mathrm{~K}}{10,11}$.

A total area, amounting to $7,11+$ square miles, was completed. The out-turn of the f-inch original survey, $l \frac{1}{2}$-inch original survey, $l \frac{1}{2}$-inch resurvey and 3 -inch resurvey was $6,67 ., 1: 3 \times, \therefore 71$ and 30 square miles respectively, the average monthly out-turn per man was $53 \cdot 8,5 \cdot 9,10 \cdot 9$ and $5 \cdot 6$ square miles respectively and the cost-rate per square mile was Rs. $6 \cdot 7$, Rs. $51 \cdot 7$, Rs. $+2 \cdot 2$ and Rs. $66 \cdot 9$ respectively. The whole of the area surveyed on the $\frac{1}{2}$-inch and $1 \frac{1}{2}$-inch scales, amounting to 7,084 square miles, is in Hyderābād.

Triunyulation.-The nature of the country was hilly, interspersed with open undulating areas, the portion along the Kistna river in sheets $56 \frac{\mathrm{~L}}{12,16}$ being difficult as it is heavily wooded and sparsely inhabited. The area triangulated in sheets $56 \underset{10,11}{\mathrm{~K}}$ for the 3 -inch seale was open with rocky hills.

Mr. Eknath Battu completed an area of $\mathbf{1 , 7 7 9}$ square miles (including 70 square miles for the 3 -inch scale) in sheets $5\left(\frac{\mathrm{~K}}{10,11}\right.$ and $56 \frac{\mathrm{~L}}{\mathbf{3 , 1 0 , 1 1 , 1 3 , 1 5 , 1 5}}$, surveyor Jagan Nath completed an area of $: 2,769$ square miles in sheets $56 \frac{1}{12,16}, \quad 56 \frac{0}{3,4,7,8}$ and $56 \frac{\mathrm{P}}{1 \text { to } 6}$ and survevor Dharmaji Narsu completed an area of 1,860 square miles in sheets $56 \frac{0}{11,12,15,18}$ and $50 \frac{\mathbf{P}}{0,13,13,1 t}$.

The total out-turn was $6,3: 3$ square miles for detail survey on the $\frac{1}{2}$-inch, 1 -inch and $1 \frac{1}{2}$-inch scales and 70 square miles for the 3 -inch scale and the cost-rate per square mile was Ks. $\mathcal{Z} \cdot 8$ and Rs. $12 \cdot 1$ respectively. Areas of $t, 691$ square miles for the $\frac{1}{2}$-inch scale and 1,298 sfuare miles for the $1 \frac{1}{2}$-inch scale were in Hyderäbad.

Tracersing.-The nature of the country was hilly and heavily wooded.
The work was carried out by Mr. Kam Narayan Hastir and a computer. The total outturn was 126 sruare miles, or 95 linear miles, and the cost-rate per square and linear mile was Rs. $25 \cdot 9$ and Rs. $34 \cdot 3$ respentively. 84 and 42 square miles were traversed for the $\frac{1}{2}$-inch and $\frac{1}{\frac{1}{z}}$-inch detail survey respectively. The whole area is in Hyderäbad.

Recess Duties.-(a) The fair-mapping was divided as follows:-
No. 1 Section.—Under Mr. Meyer, $\frac{1}{2}$-inch sheets $56 \frac{\mathrm{C}}{\text { N.E., S. E. }}$ and $56 \frac{a}{\text { s. } \mathrm{w} .}$ and also

So. 3 Sectuon.-Under Mr. Munshi Lal, the fair-mapping on the 2-inch scale of 14 sheets of state forests aud also completing 19 such sheets remaining from 1916-17.

The fair-mapping of the 3 -inch map of Kāpra camp was carried out by No. 5 Party.
Sheets $56 \frac{K}{\text { N. W., s. W. }}$ have been submitted for publication, sheets $56 \frac{K}{\text { N. E., S. E. }}$ have been rompleted and the 19 two-inch shents remaining from 1916-17 have been practically completed. The other sheets are in hand and will probably be completed by No. 5 Party during the coming field season.

A total area of 7,214 square miles was fair-mapped. The out-turn for the $\frac{1}{2}$-inch and 2 -inch scales was 6,805 and 409 square miles respectively and the cost-rate per square mile was Rs. $2 \cdot 0$ and Rs. 8.8 respectively. The whole of the area fair-mapped is in Hyderäbäd.

Owing to the transfer of most of the party's best draftsmen on field service, it has been found very difficult to keep the fair-mapping out-turn up, to date.
(b) The computations of the triangulation have not been completed.

No triangulation pamphlets have been undertaken by the party.

No. 7 PAR'TY (MADRAS).

By W. M. Golman.
This party completed the detail survey of sheets $57 \frac{N}{1+0,13,14}$ and $66 \frac{\mathrm{H}}{1,2}$ on the l-inch scale, of certain reserved forests falling in

Perbonnel.

Provincial Officers
Mr. W. M. Gorman, in charge.
, F. H. Grunt.
" B. 'I. Wgatt.
, N. S. Harihara Iyer.
Opper Subordinate Service.
Mr. Abdul Hatt, K. s.
, P. S. Vengusrami.
", Shib Lal.
, Sbaikh Muhammad Sulit.
" E. N. Natersan, B: A.
" Pulin Behari Koy.
" Jitendra Mohan Mrıkerji, to 31st July 1918.
Lower Subordinate Service.
30 Surveyors, etc.
sheets $57 \overline{1,2,4,5,0,7, N}, \overline{3}, 10,11,15,15$ on the 2 -inch scale and of the balance of the special survey, remaining from last season, of reserved forests Udayagiri Velikonda Block A with Extensions and Gundlakonda, falling in sheets $57 \frac{\mathrm{~N}}{1,2,5}$ on the 4 -inch scale.

The party also completed the triangulation of sheets $56 \frac{\mathrm{~L}}{10}$ (up to the Kistna river), $57 \frac{\mathrm{I}}{13}$ and $57 \frac{\mathrm{~J}}{1,2,5,6,5,10,19,14}$.

The country surveyed embraces a portion, mostly rescrved forests, of the Eastern Ghāts and an undulating expanse of cultivated and wooded land, studded with low isolated hills, between the foot of these Ghats and the sea-coast.

The field season opened at Kāvali field head-quarters on the lst November 1917 and closed on the 9th May 1918, with the excejtion of a few surveyors and the triangulators who arrived on the 30 th May and 26 th Jume respectively.

The health of the party was on the whole good. Two menials died from natural causes during the field season.

Plane-tabling.-The country surveyed may with advantage be divided into two tracts, possessing totally different features, viz. the Lastern Ghats on the west and the undulating expanse starting from the foot of the same to the sea-coast on the east. In the former, the Velikonda range, precipitous on its eastern side but with a more gradual slope on the west, presents a natural and well-defined line separating Cuddapah from Nellore district and marks the boundary betreen the two, this continuous mountain wall romning north and south is pierced by the Penner river at Somasila; inland, this range breaks into a less elevated and more irregular group of hills, of fragmentary spurs and ridges, separated by a fertile plain from the more defincd and denser mass of hills, known as the Pälkondas or Seshāchalam, further west. From the Velikonda range eastwards, the country undulates in broad tracts of scrub jungle and cultivated expanses studded with isolated hills to the sea-coast. Nearly all the drainage of the country is into the Penner river, fowing from west to east through the Cuddapah and Nellore districts, in its upper reaches it drains rather than waters the country through which it flows, lower down it is dammed at Sangam and Nellore and its accumulated waters are led off to supply many irrigation channcls. Much is also done for irrigation in the shape of numerous tanks which husband the local raiufall. The north-west and north-east lines of the Madras and Southern Mahratta railway (broad gauge) traverse the extreme west and east respectively of the area surveyed. The intervening country between the railways is well served with main and other roads radiating in every direction, supplemented by numerous cart-tracks. Besides the one main road connecting Cuddapah with Nellore and crossing the Ghats at the Dornal pass, sevcral foot-paths cross the main range throughout its entire length. Double and single bullock carts ply on all roads and motor buses on a few, but they are very uncertain owing to break-downs and want of proper management. There are no archæological remains of any interest except the hill fort at Udayagiri.

The work was divided among three camps as follows:-
No. 1 Camp, under Mr. Abdul Hakk, K. S. with 7 surveyors, completed an area of 60 square miles of 2 -inch original survey of reserved forests, 711 square miles of 1 -inch original survey and 316 square miles of 1 -inch supplementary survey in sheets $57 \frac{\mathrm{~N}}{3,4,7,8}$ and $57 \frac{\mathrm{~N}}{11,15}$.

No. 2 Camıp, under Mr. Grant assisted by surveyor Shadi Lal Dube as instructor, with Mr. Wyatt and 12 surveyors, completed 45 square miles of 4 -inch special original survey of reserved forests, 87 square miles of 2 -inch original survey of reserved forests, 1,384 square miles of 1 -inch original survey and 162 square miles of 1 -inch supplementary survey in sheets $57 \frac{\mathbf{N}}{1,2,5,6,9,10}$.

No. 3 Camp, under Mr. Shib Lal with 8 junior surveyors and the help of a surveyor from No. 1 Camp, completed 16 square miles of 2 -inch original survey of reserved forests, and 845 square miles of l-inch original survey in sheets $57 \frac{\mathrm{~N}}{13,14}$ and $66 \frac{\mathrm{H}}{1,2}$.

Bold rugged hills, with bare crests, steep eastern slopes, and undulating ground at their base, covered with a dense growth of trees and much detail, comprised the ground, surveyed on the 4 -inch scale, of the special reserved forests remaining over from the last season. All main streams in the low ground were traversed with the plane-table and chain, otherwise features and detail lent themselves to sketching and interpolation. With the exception of the western boundary, between the Guudlakonda reserve and the Ulayagiri Velikonda reserve, found undemarcated at time of survey but cleared later on representation, all boundaries were found cleared and marked with pillars (un-numbered). Stations of the theodolite traverse run in 1916-17 were found and utilised.

The number of reserved forests with extensions, surveyed on the 2 -inch scale, are 29 and lay scattered throughout the work. They embraced high rocky hills, several low isolated hills, a long range of low hills known as the Yerrakondas and the plains of Nellore, and were composed mostly of scrub jungle. Interpolation and plane-table traversing, where necessary, were employed. Forest plans, as far as received from the forest authorities, were utilised in checking the run of the forest boundaries and for local names contained therein.

Direct blue prints on Bristol boards of l-inch prints supplied by the Madras Revenue Survey were very sparingly used, owing to the junior nature of the surveyors. The remaining l-inch prints were transferred in blue by surveyors as the work progressed. Very little help was obtained from the work of the Madras Revenue Survey in the Cuddapah district owing to its scanty and detached nature, elsewhere it was found helpful in parts. Zamindāri areas on the above prints were of no great use to the survey.

The l-inch supplementary survey consisted of reserved forests previously surveyed on the 4 -inch scale by the Survey of India in the Cuddapah district. They were reduced to the $1 \frac{1}{2}$-inch scale in blue, inked up in regard to detail and hill features, and pasted on $1 \frac{1}{2}$-inch plotted and projected sheets on drawing paper by means of common trigonometrical points; the whole being reduced to the 1 -inch scale by direct blue prints on Bristol boards, and brought up to date during survey in detail and contouring.

A total area of 3,626 square miles was surveyed. The total out-turn of the 4 -inch original survey, 2 -inch original survey, 1 -inch original survey and 1 -inch supplementary survey was $45,163,2,940$ and 478 square miles respectively, the average monthly out-turn per man was $4 \cdot 3,6 \cdot 7,28 \cdot 3$ and $32 \cdot 8$ gquare miles respectively and the cost-rate per square mile was Rs. $95 \cdot 5$, Rs. $+1 \cdot 3$, Rs. $11 \cdot 5$ and Rs. $5 \cdot 5$ respectively.

Triangulation.- The country triangulated is a continuation southward of the previous season's work and is similar to the ground topographically surveyed in the Cuddapah district. It embraces the high and thickly forest-clad Lankamalla hills, mostly reserved forests, and the Nallamalais where they project into the plains of Cuddapah on the east, the undulating country between the above hills and the detached group of the Mallyala and Gandikota hills on the west, and the plains of Anantapur. The chief river is the Penner, flowing eastwards into Nellore, which contains a great volume of water in the rains, but during the hot months dwindles down to an inconsiderable stream. Its tributaries are the Cheyyeru and Pāpaghni from the south, the Kunderu from the north and the waters from the Kurnool-Cuddapah canal. The area is well served with a net-work of main and other roads and, in addition, the northwest line of the Madras and Southern Mahratta Railway (broad gauge) practically traverses the centre of $i t$.

The total area triangulated, based on the Great Arc Meridional Series, is 2, 723 square miles, of which Mr. Shaikh Muhammad Salik completed an area of 1,286 square miles in sheets $56 \frac{\mathrm{~L}}{16}, 57 \frac{1}{18}$ and $57 \frac{\mathrm{~J}}{10,13,14}$ and Mr . Vengusvami completed an area of 1,437 square miles in sheets $57_{\overline{1,2,5,6,9}}$. . The cost-rate per square mile was Rs. $6 \cdot 5$.

The $\frac{1}{4}$-inch traverse chart of 57 J by the Madras Revenue Survey, after all forest and party data contained therein had been plotted and rays inked up, was sent to the Photo.-Zinco. Office and direct blue prints obtained which were made over to the triangulators. These greatly simplified their work, besides enabling them to fix trijunctions and traverse stations of the local survey to check the accuracy of that work. The nine trijunctions fixed were computed and compared with the Madras Revenue Survey spherical values reduced from rectangular co-ordinates. The error is $1 \cdot 27$ seconds in latitude and $0 \cdot 41$ seconds in longitude.

Recess Duties.- (a) The fair-mapping of the survey completed was divided as follows:-

No. 1 Section, under Mr. Grant, sheets $57 \frac{N}{1,2,5,6,6,10}$.
No. 2 Section, under Mr. Wyatt, sheets $57 \frac{\mathrm{~N}}{3,4,7,8}$.
No. 3 Section, under Mr. Shib Lal, sheets $57 \frac{\mathrm{~N}}{19,14}$ and $66 \frac{\mathrm{~B}}{1,2}$.
It is expected that the above 14 sheets will be fully fair-drawn and some be ready for publication before the end of the recess season, the others will be held over until the typing, which is backward, is completed. The total area of the fair-mapping is 3,737 square miles and its cost-rate is Rs. $6 \cdot 6$ per square mile.

The fair-mapping of the 4 -inch special reserved forests, surveyed during 1916-17 and this season, will be undertaken by the Forest Map Office, Dehra Dūn, as soon as possible after the submission of the current season's fair-mapping in which the 4 -inch field sections are incorporated.
(b) Arrears of computations in 56 P and 57 M were completed in the field season. There still remain arrears of computations from last season in 56 L and 57 I and, owing to the shortage of hands due to the war, it is expected that a portion of the current season's work will also be in arrears. These arrears will be undertaken during the coming field season by the party computers. No progress has been made with the triangulation pamphlets owing to the party being undermanned. Chart 57 H was started but has been held over.

No. 8 PAR'TY (MADRAS).

By C. E. C. Fimench.

This party took the lield in reduced strength and completed the detail survey on the 1-inch scale of sheets $38 \underset{5,0}{\mathrm{H}}$ and on the 3 -inch scale of the Royal Artillery Practice Camp of Rajankunti in sheets $57 \underset{11,12}{G}$. The party also carried out theodolite traversing in sheets $58 \frac{\mathrm{H}}{6}$ and $58 \frac{\mathrm{~K}}{5,6,9,11,11,15 .}$

The area surveyed on the 1 -inels scale comprises densely wooded hills, terminating abruptly in flat country, while the traversed area consists of featureless plains.

The ficld season opened on the 19th November 1917 and closed on the 18th May 1918. The head-quarters of the party, with the majority of its members, remained in Bangralore throughout the year.
The health of the party, generally, was gool ; men in the field however suffered a good deal from fever in the forest tracts. Mr. Adams died in Bangalore on the 26 th January 1918. 1 surveyor died during the recess season and 3 khalasis died of cholera during the field season.

Plane-tabling.-The highlands of the area surveyed on the l-inch scale comprise a region of wild mountainous forms, clothed with impenetrable forest, their precipitous and
craggy declivities merging suddeuly into broad fertile plains. Sheets $58 \frac{\mathrm{H}}{5,8}$, of which the detail survey was completed by Mr. Mahadeva Mudaliar with 9 surveyors, comprises mostly an area of remote hill tracts, covered with dense forest and devoid of communication, thereby rendering the problem of survey no easy une. The want of labour for jungle clearing necessitated the building of platforms on tall trees, some 60 to 70 feet above the ground, from which a view of the country was obtained and survey made possible.

The resurvey on the 3 -inch scale of 48 square miles of open, undulating country, situated some 1% miles north of Bangalore and known as the Royal Artillery Practice Camp of Rajjankunti, was also completed by l surveyor.

A total area of 635 square miles was surveyed. The total ont-turn of the l-inch original survey, 1 -inch revision survey and 3 -inch resurvey was 432,155 and 48 square miles respectively; the average monthly out-turn per man was $15 \cdot 5,16 \cdot 1$ and $6 \cdot 9$ square miles respectively and the cost-rate per square mile was Rs. $39 \cdot 8$, Rs. $39 \cdot 8$ and Rs. $32 \cdot 5$ respectively.

Trarersiny.-The fixing of points by theodolite traverse for detail survey on the l-inch scale was carried on over a country of fertile plains, well served with communications and intersected by a section of the South Indian Railway. Mr. Narasimhamurti Rao with 1 surveyor traversed 727 linear miles at a cost-rate per linear mile of Rs. $9 \cdot 9$.

Section VI of the Tinnevelly-Travancore boundary was identified and fixed by 14 linear miles of theodolite traverse, following the alignment as described in orders issued by the Madras Government. Difticulties were experienced on this portion of the work. Owing to the extreme inaccessibility of the densely wooded range of hills along which the boundary runs, labour was hard to obtain, weather and inadequate assistance to the surveyor also hampered progress considerably.

Recess Duties.-(a) The fair-mapping was divided as follows:-
No. 1 Section.-Under Mr. Narayanasvani Chetti working throughout the year, $\frac{1}{2}$-inch

No. 2 Seclion.-Under Mr. Mahadeva Mudaliar, and while he was on leave under Mr. Morton, working during the recess season only, l-inch sheets $58 \frac{\mathrm{II}}{5,6}$.

The fair-mapping of the 3-inch map of Rajankunti camp is being undertaken by No. 5 Party.

Sheets $58 \frac{\mathrm{~B}}{\mathrm{~S} . \mathrm{w}^{-}}, 58 \frac{\mathrm{C}}{\mathrm{S} . \mathrm{E}, \text { and }} 66 \frac{\mathrm{D}}{\mathrm{N} . \mathrm{W}, \text { S. W. }}$ have been completed and submitted for

 of sheets $58 \frac{11}{5,6}$ is nearly completed.

A total area of 5,204 square miles was fair-mapped. The out-turn for the $\frac{1}{2}$-inch and l-inch scales was 4,744 and 460 square miles respectively and the cost-rate per square mile was Rs. $4 \cdot 1$ and Rs. $4 \cdot 1$ respectively.
(6) The preparation of triangulation pamphlets and the computations of the party have been under Mr. Mahadeva Mudaliar's supervision. The material for triangulation pamphlet 58 C has been submitted, for 58 A will be ready shortly and for 58 B and 58 M is under preparation. Computations sufficient for next field season have been finished and some arrears of previous seasons will be completed during the next few months.

No. 20 PARTY (CANTONMENT).

By B. R. Hughes.

During the year the party completed the survey of cantonments and military stations and of bäzärs in the Northern Circle and continued

Personnel.

Provincial Officers.

Mr. A. Fwing, in charge to 29tb April 1918.
" B. R. Hoghes, in charge from 30th April 1918.
, E. O. Pilcher, from 8th May to lst August 1918.
" O. D. Jactson.

Upper Suhordinate Service.
Mr. Dharmu.
"Jitendra Mohan Makerji, from 1st August 1918.

Lower Subordinate Service.
25 Surveyors, etc. survey operations in the Southern Circle.

The field season continued throughout the year. The head-quarters of the party was at Poona unti] the end of April 1918 and at Secunderabad for the remainder of the year.

The health of the party was indifferent. Several of the draftsmen and khalasis suffered from malaria at Poona and Secunderäbād.

Plame-tabling.-The survey on the 16 -inch scale of the cantonments and military stations of Dalhousie (Thatt Hill), Chaman, Manora, Erinpura, Agar, Jhaiusi, Aurangäbäd and New Dellii was completed and of Ahmadnagar and Hosūr Remount Depôt was commenced, and the survey on the $6 t$-inch scale of the $b \bar{a} z a ̄ r s$ of Manora, Erinpura, Agar, Jhānsi, Aurangābād and New Delhi was completed and of Ahmaduagar and Hosūr Remount Depôt was commenced.

Mr. Ewing inspected the survey of Chaman, Manora, Erimpura, Agar, Jhãnsi, Aurangaband, Nhmadnagar and New Delhi; Mr. Hughes inspected the survey of Manora, Aurangäbād, Ahmadnagar and Hosūr Remount Depott; Mr. Jackson was in charge of the survey ol Jhansi and New Delhi and Mr. Dharmu was in charge of the survey of Dalhousie (Thatt Hill), Erinpura, Agar and Hosūr Remount Depôt. The accuracy of the survey was tested by Messis. Ewing, Hughes, Pilcher, Jackson and Dharmu by 5, 1, 3, 35 and 3j linear miles of test lines respectively.

The total areas plane-tablel on the 16 -inch and 64 -inch scales were 26,527 and 314 acres respectively; the a verage monthly out-turn per man was $279 \cdot 2$ and $21 \cdot 4$ acres respectively and the cost-rate per arre was $\mathrm{R} s .1 \cdot 3$ and $\mathrm{R} s .11 \cdot \%$ respectively.

Trianyulation.-Suflicient numbers of stations and intersected points were fixed from the nearest Great Trigonometrical Series in Dalhousie (Thatt Hill), Manora, Erinpura, Agar and Aurangäbăd for the connection of the theodulite traversing. Mr. Dharmu and one surveyor were employed on the triangulation.

The total area triangulated was 270 square miles and the cost-rate per square mile was Rs. 3•7.

Traversing.-The traversing of Dalhousie (Thatt Hill), Manora, Erinpura, Agar, Aurangäbãd, Sätña, New Delhi, Bellary and Hosūr Remount Depôt was completed and of Secunderäbād and Bolārum was commenced by Mr. Dharmu and 2 surveyors.

A total of 3306 linear miles was traversed at a cost-rate per linear mile of Rs. 26.9 .
Levelling.-Levelling was undertaken by Messrs. Jackson and Dharmu and one surveyor in Erinpora, Agar, Aurangābād and New Delhi, and from 5 to 10 bench-marks were fixed in each at a total cost of Rs. $1,6 \mathrm{k} .6$.

Recess Duties.—12 fair shects of Riwalpindi, Topa, Jhelum, Siālkot, Neemuch and Deoli were submitted to Dehra Dūn for publication, and (io sheets of Drosh, Chitrāl, Ghairat, Dalhousio ('Thatt Hill), Chaman, Manora, Erinpura, Agar, Nasīràbäd, Jhānsi, Aurangābād, New Delli, Drazinda, Jatta, Zäm and Jandola were beings, or were ready to be, fair-mapped at the end of the year. The fair-mapping is fairly well up-to-date.

The tutal areas fair-mapped on the 16 -inch and 64 -inch seales were 22,113 and 416 acres respectively and the cost-rate per acre was Rs. $0 \cdot 3$ and Rs. $3 \cdot 8$ respectively.

Miscellaneous.-The survey of Colaba and Military and Dockyard areas in Bombay was not undertaken as the Bombay City Surver will be sufficient. The survey of Deolãli has been indefinitely postponed. After the traversing of Sätara had been completed, information was received that the survey was being undertaken by the Land Records Department, Bombay and this will be sufficient.

EASTERN CIRCLE.

- (Vide Index Maps 3 and 6).

Summary.-The four topographical parties of this Circle completed, during the year, the detail survey of :-

2,501	square miles of country on the	$\frac{1}{2}$-inch scale.	
5,353	do.	do.	l-inch scale.
34	do.	do.	l-inch scale (revision).
473	do.	do.	2 -inch scale.
35	do.	do.	4-inch scale.

The triangulation of $5,93 \nmid$ square miles of country was completed, and 1,616 linear miles of theodolite traversing was run during the year.

Lieutenant-Colonel R. T. Crichton, C. I. E., I. A. proceeded on leave on 30th March 1918 and was succeeded in the control of the Circle by Lieut.-Colonel C. L. Robertson, C. M. G., R. E. The latter proceeded on 6 weeks privilege leave on 8 th May, and during his absence Lieut.-Colonel A. Mears, I. A. acterl for him.

On return from leave Lieut.-Colonel Robertson resumed the superintendentship of the Circle till the end of the year.

No. 9 PARTY (BENGAL).
By E. J. Biggie.
The programme of work of the party, as in the preceding year, lay in Bengal.
The country surveyed is intersected by numer-

Pergonnel.

Prodincial Officers
Mr. J. Smith, in cbarge to 13 th September 1918. ,, E. J. Biggie, from 20th May 1918, and in
charge from 14 th september 1918.
, A. B. Hunter.
, B. C. Newland.
"Amar Krishina Mitra.
Upper Suborlinate Service.
Mr. Amulya Charan Gbosh.
, Gopal Lul Mitra.
Lower Subordinate Servics.
23 Surveyors, etc.
Shillong for half-inch mapping.
The general health of the party throughout the field season was grood. Among the lower subortinates there was only one prolonged case of sickness, due to fever. One khalasi died of cholera.

Plane-tabling,-The country lay in the flat, open plains of Beugal. The work was of an easy natiure as most of it was done by interpolation, except in the interion of villages, where traversing had to be resorted to.

For the greater part of the season the toporraphical surveyors working on the one-inch scale were diviclerl into two camps.

No. 1 Camp, consisting of 10 survevors, under Mr. B. C. Newland, and later, under Mr. A. B. Hunter, surveyed on the one-inch scale 1,363 square miles in sheets $79 \frac{A}{7,10,11,13,14}$ and revised $3+$ square miles of previous survey on the same scale in sheet $79 \frac{\mathrm{~A}}{\mathrm{D}}$.

No. 2 Cainp, of 3 surveyors under Mr. A. K. Mitra, surveyed 821 square miles on the l-inch scale in sheets $79 \frac{\Delta}{\mathbf{3}, 4,8}$.

Mr. Newland returned to Shillong after making over charge of No. 1 Camp to Mr. Hunter about the end of December, and took up the supervision there of the half-inch mapping.

The cost-rate for original detail survey works out to Rs. $8 \cdot 0$ per square mile and that for revision survey to $\mathrm{Rs}_{\mathrm{s}} 3 \cdot \mathbf{4}$ per square mile.

Triangulation. - No triangulation was carried out by the party during the season under report.

Traversing. - The country traversed was much of the same nature as that surveyed, except that in the south-east portion there are extensive areas of marshy lands where boats were the means of transport.

The traverse camp consisted of two Upper Subordinates and two traversers under Mr. Mitra and executed advance traversing in sheets $79 \underset{1,2,5,4,4,10,18,14}{ }$ for detail one-inch survey in subsequent seasons at a cost of Rs. $11,3+4$. The cost-rate of this per linear mile worked out to Rs. 13.7. The traversing was purely for topographical purposes, main and sub-circuits being run along roarls and railways, and a few sub-circuits across country, where it was open. From the traverse stations conspicuous objects, such as temples, mosques, isolated trees, large buildings and bridges were fixed as intersected points. Connections were made with 15 G. T. stations, and 1, 785 intersectel points fixed by observations from traverse stations. There were 34 stations permanently marked by circles and dots cut on the masonry of bridges, culverts and mile-stones, the remaining traverse stations wore marked by wooden pegs.

Recess Duties.- (a) The fair-mapping of the field season's out-turn, comprising 8 one-inch sheets, was carried out by 2 sections.

No. 1 Section, consisted of one Upper Subordinate and 6 draftsmen. It was under Mr. Hunter up to 20th May 1918, and was then taken over by Mr. Biggie. It fair-mapped sheets $7!$, A, for, publication on the one-inch scale.

No. E Sirction, consisted of (idraftsmen under Mr. Newland, and carried out the fairmapping, for publication on the one-inch seale, of sheets $79 \underset{10,15, \overline{4}}{\mathrm{~A}}$; in addition to sheets
 $83 \frac{\mathrm{~J}}{\mathrm{~N} . \mathrm{w} .}$ has just been put in hand. This section was taken over by Mr. Mitra on 4th September 1918 when Mr. Newland was transferred to Mesopotamia.

The fair-mapping of all the l-inch sheets was carried out by the direct-mapping process on blue print enlargements from the plane-table sections, that of the $\frac{1}{2}$-inch sheets on blue print enlargements from the romponent 1 -iuch published sheets.

The out-turn of 1 -inch fair-mapping is 1,777 spuare miles and that of $\frac{1}{2}$-inch is 4,870 square miles.

The cost-rate for 1 -inch mapping is Rs. $7 \cdot t$ per square mile and that for $\frac{1}{2}$-inch mapping is Re. $1 \cdot 9$ per square mile.

The fair-mappinge of the 1 -inch sherts will be completed before the party takes the field except as regards the entry of district and subedivision boundaries, traces of which have been sent to the Cullectors for verification. Of the $\frac{1}{2}$-inch mapling, sheets $93 \frac{\mathrm{E}}{\mathrm{x} \cdot \mathrm{IV} .}, 94 \frac{\mathrm{~B}}{\text { s. } \mathrm{E} .}$ and $91 \frac{C}{n \cdot L}$ are complete except for the final examination.
(b) Other reeses duties eomprised the computation of the season's traversing, of which that required for $;$ shoets will be ready at the close of the recess; and the preparation of triangulation charts and mannecript lists of dati of all triangulation done by the party since its transfer to the bastern Civele. Mr. Hunter, assisted by an Upper Subordinate and a small staff of computers, had charese of these duties.

Charts of degree sheets 7313 and $7: 3$ F have been submitted to the Superintendent of the Trigonometrical Survey. The preparation of degrer charts 64 N and 64 O was in hand during the years, but they were not complated.

Miscellaneors.- The river Hooghly and its tributaries the Bhagernathi and Jalangi
 this party. The new surver has diselosed the fact that the Bhagirathi, which lower down after its confluence with the Jalangi is called the Ilooghly, has completely changed its course. The new river has forcel a passage for itself right across its former course, now to the cast of it, now to the west, and formerly where a large loop in the river was towards the east it is now towards the west. After a lapse of over (60 years such changes are bound to take place in the course of every strom, whether harge or small, flowing through the plains of Bengal, which to a great extent are alluvial in character, as it is well known that in country of this description streams are constantly altering their conses, eating away on one bank and depositing on the other, until the channel in which they formerly flowed becomes silted up, and the water is compelled to scek another course.

No. 10 PARTY (UPPER BURMA).

By M. C. Petters.

The previous season's operations were continued northwards and embraced sheets $92 \frac{\mathrm{C}}{0,10,14}$ and sheets $92 \frac{\mathrm{E}}{\text { N.W., N.E., S.W. }}$. The triangulation was extended in sheets $92 \overline{\text { N.W., } \overline{\text { N.E.E. }} \text {. }}$

The country surveyed in sheets $92 \overline{\mathrm{~N} . \overline{\mathrm{W}} ., \overline{\mathrm{N}} \cdot \overline{\mathrm{E} ., \mathrm{s}} \mathrm{E} \cdot \mathrm{W} .}$ consisted of the high mountainous tract at the headwaters of the Irrawaddy river, and varied in altitude from 600 feet in the low ground to 15,000 feet above sea-level in the high range forming the water-parting of the Brahmaputra and Irrawaddy rivers. The whole of this area was densely wooded and heavy jungle clearing, for from 2 to 4 days at each site, was necessary at selected places before plane-table fixings by resection were possible. The rate of work was very much impeded by rain and heavy mist, which made plane-table fixings by interpolation impossible for days together. Nung and Shan coolies were employed as porters for the carriage of equipment and rations over large areas

83 Sarvejore, ote.

in which no roads and villages existed. About 56 miles of mule road had to be made to onable rations to be stocked at depots within reasonable distances of surveyors' camps. All rations other than rice had to be transported from Myitkyina over, in some instances, a distance of 30 marches. The area surveyed in sheets $92 \cdot \frac{C}{6,10,14}$ varies in altitude from 600 to 5,000 feet, and is cut up by numerous low-lying valleys covered with dense forest growth.

The field season opened on lst November 1917 for Nos. 1, 2 and 3 Camps and the triangulators, and on lat December 1917 for No. 4 Camp and the Training Section. The field season cloeed on different dates between 4th and 20th June 1918.

The health of the party was good during the field season, but a large number of men suffered from ulcers due to leech bites and the stings of a variety of poisonous flies.

Pline-tabling.-The programme of survey on the one-inch scale was completed, but, owing to transfers from the party at the commencement of the field season and to heavy rain in March, April and May, the half-inch area was not finished, and portions of sheets 92 v. $\frac{E}{\text { E. N. . }} \mathbf{2 , w}$. remain to be surveyed. The work was divided into three camps under Messrs. W. G. Jarbn. H. H. Creed and D. N. Banerji, and, towards the end of the season, Mr. A. V. Dickson was in charge of a small camp. Mr. Maung Kyav Nyein was in charge of the :nstruction of pupils.

N; 1 (imp, under Mr. W. G. Jarbo with 7 surveyors, completed an area of 1,356
 two of thege surveyors were transferred to a small camp under Mr. A. V. Dickson.

Vn. 2 Camp, ander Mr. H. H. Creed with 5) surveyors, completed an area of 18 square miles no the one-inch in sheets $92 \frac{B}{0.13}$, and 960 square miles on the half-inch in sheet $93 \frac{\mathrm{E}}{\mathrm{n} . \mathrm{E}}$.

Vh. 3 Camp, under Mr. A. V. Dickson with 2 survevors transferred from No. 1 Camp, continnel. on the half-inch scale, the survey of sheet $92 \underset{\mathrm{~s} . \mathbf{w}}{\mathbf{E}}$. and completed an area of 108 equare miles.

No. 4 Cimp, under Mr. D. N. Banerji with 9 surveyors, completed an area of 459 equare miles on the one-inch scale in sheets $92 \frac{\mathrm{C}}{6.10}$. Mr. Banerji personally surveyed 9 -quare miles of this total.

Mr. Maung Kyaw Nreio was in charge of a Training Section composed of 7 pupils, 4 of whom were attached to No. 10 from No. 11 Party for training. The work of the pupils bal to he rigorously tested before being accepted. This was done by tests carried out on the original plane-tables, and, after the small areas had been transferred on to a large block, by a
further test and correction by the Camp Officer. Mr. Maung Kyaw Nyein personally surveyed an area of 67 square miles, and the pupils 185 square miles on the one-inch scale in sheet $92 \frac{\mathrm{C}}{14}$.

Out-turns and cost-rates are as follows:-
$\frac{1}{2}$-inch survey, $2,4 \cdot 24$ square miles @ Rs. $24 \cdot 7$ per square mile.
l-inch ", 477 " " @ Rs. $48 \cdot 7$ ", "
The cost-rate of the area surveyed on the 1 -inch scale by the Training Section is not iucluded in the above.

The cost-rates are higher than those of the previous year, owing to the greater distances, as compared with last year, of the centre of gravity of the locale of operations from the railhead at Myitkyinā.

Triangulution.-Mr. Hayat Muhanmad, K. S., triangrulated an area of 1,684 equare miles for cletail surver on the one-inch and half-inch scales, in sheets 92 n. w., $\frac{\varepsilon}{2 . E}$, while Mr. Ram Prasad, R. S. carried out the triangulation of a further 1,400 square miles for purposes of detail survey on the $\frac{1}{2}$-inch seale.

An endeavour was made to extend the net-work of triangulation in sheet 92 E , westwards to the high watershed forming the boundary between Burna and Assam, to arlmit of a convenient connection at some future date with the Assam triangulation. Mr. A. V. Dickson was deputed for this work, but, owing to the refusal of local coolies to cross the snow-line, after two attempts the extension had to be postponed.

The cost-rate of triangulation executed for purposes of detail survey on the l-inch scale worked out to lis. $12 \cdot 7$ per square mile, and that for those of detail survey on the $\frac{1}{2}$-inch scale to Rs. $7 \cdot+$ per square mile.

Recess Dutier.-(a) The fair-mapping of the season's out-turn, comprising 3 complete one-inch sheets and portions of 3 half-inch sheets, was carried out by two sections under the supervision of Messrs. H. H. Creed (3 sheets) and D. N. Banerji (3 sheets). lixcept for a small area, of which the survey was completell late in the season, the direct-mapping system was again adopted this year, and appreciably expedited the progress of the work. Sheets $92 \overline{6,10,14}$ will be submitted for publication before the party takes the field. Sheets $92 \frac{\text { E }}{\text { s. W., N. E., S.W. }}$ are not completely surveyed and any portions of the surveyed areas remaining unmapped at the end of the recess will be completed in the Maymyo drawing office.
 have been submitted for publication during the year under report. The fair originals of sheets $92 \frac{\mathrm{C}}{12}$ and $92{ }_{6}^{6}$ were also corrected and brought up to date. Sheet $92 \frac{\mathrm{~F}}{\mathrm{~s} . \mathrm{w}}$. was surveyed and fair-mapped last year but the delay in its submission for publication is due to the district boundary between Myitkyinã and Putao, which has been under investigation by the district authorities, not being finally sattled.

The out-turn of one-inch and half-inch mapping is 805 and 1,130 square miles respectively, and the cost-rates Rs. $12 \cdot 2$ and $\mathrm{Rs} .5 \cdot 7$ per square mile respectively. These cost-rates are somerhat higher than last year. This is due to the drawing power of the party being much reduced br the recent transfers of its more skilled draftsmen-2 ollicers of the Upper Suborlinate Service and 3 of the Lower Subordinate Service being sent on service overseas, and one first class surveyor being transferred from the party. One officer of the Upler Subordinate Service retired on pension during the year.
(b) The computations of the season's triangulation were completed during the recess by Mr. A. V. Dickson assisted by Mr. D. N. Saha and two computera.

No. 11 PARTY (LOWER BURMA).

By J. O. Greiff.

The party was employed in Lower Burma, in the districts of Mergui, Tavoy and Amherst. The drawing office remained at Maymyo.

Perbonnel.
Provincial Officers.
Mr. J. O. Greiff in charge.
C. E. C. Freach, to 3rd June 1918.
, O. J. H. Hart.
, E. M. Kenny, from 1st Jone 1918.
, C. O. Picard.
Opper Subordinate Service.
Mr. Lachman Daji Jadu, R. B. to 18th Auguet 1918.
Dalbir Rai
" Pratul Chandra Sen Gupta, B. Sc.
Lower Subordinate Service.
34 Surveyors, etc.

The area surveyed on all scales was 1,475 square miles, distributed as follows:-

1,158 square miles of plane-tabling on the l-inch scale, in sheets $95 \frac{K}{15\left(\mathrm{p}^{2 r t}\right), 16(\mathrm{part})}$, $95 \frac{0}{3(\text { part }), 4 \text { (part) }}$ and $95 \overline{1}$ (1nrt), 6 (purt), $\overline{8(\text { part }), 12}$, in the Mergui district.

Original survey on the 2 -inch scale of 282 square miles of reserved forest, in sheets $95 \frac{\mathrm{~J}}{1,5}$, in the Tavoy district.

Original special survey on the 4 -inch scale of 35 square miles, in sheets $95 \frac{1}{2,6,7}$, in the Amberst district.

The field season extended from the l4th November 1917 to varying dates between the 15th May and 2nd July 1918. The season was prolonged owing to abnormal rain in May. From the 7 th to 28th of May it rained incessantly, the rainfall being more than double the normal fall.

The surveyors and camp officers left Mergui on the 21st November, and got to Kyaukpya, on the Tenasserim river, on the 15th December. Work generally was started in the Mergui district about the 15th January 1918. At the start small boats were not available, although requisitioned at Tatmu a fortnight in advance of the arrival of the camp. The average number of working days is about 100 per surveyor for the season, this includes days spent in cutting and clearing hills. This figure is significant of the delay there was in transporting a large camp over country with little habitation and precarious means of communications. Work in Tavoy began àbout the 20th December 1917.

The health of the party was not good. There was quite an epidemic of malaria, dysentery, and diarrhcea, from which the surveyors and menials suffered badly. The average daily attendance at the camp hospital was twelve. Seven khalasis died as a result of these complaints and pneumonia.

The country surveyed in the Mergui district lay in the upper valley of the Tenasserim river and extended to the confines of Burma on the east, and, on the west, to the main watershed dividing the Tenasserim valley and the sea-board areit. In the Tavoy district a reserved forest area was surveyed on the upper waters of the Tavoy river. This basin separates Tavoy from Siam on the east, and from the district of Amherst to the north. The mean range of elevation, in both these areas, is from about 200 feet in the valleys to over 5,000 feet on the watersheds. The hills are very densely wooded, with dark, impenetrable evergreen forests, within which gloom and silence reign. The undergrowth is a tangled mass of creepers, intermixed with cane and bamboo. In the Tavoy area there was a fair amount of undulating ground, densely wooded, and consequently difficult to survey. Machans had to be built on tree-tops to enable the surveyor to fix his position and obtain some check on the accuracy of his plane-table traversing.

The upper valley of the Tenasserim river is interesting and possesses much beauty. Along the banks of the river are to be found evidences of this tract having once, probably a bundred years ago, been inhabited. The banks are rich in wild flowers, and the trees festooned with orchids of the Dendrobium variety.

The river in this part of its course is more of the nature of a torrent. The gradient is not uniform, and the river has the appearance of descending in a series of steps. Rapids are numerous, the majority being difficult to negotiate. The channel is navigable only by canoes or dug-outs. When ascending the river, portage is necessary across these rapids. Each boat has to be unloaded, the loads carried across by coolies, and the empty boats pulled over. The Karen is extremely skilful in steering his littic boat over the rapids when descend-
ing, but notwithstanding, there were frequent mishaps, resulting in losses; and, in one instance, very nearly in the death of a menial. The country in Mergui, except for about half a dozen small Karen villages along the banks of the Tenasserim river is uninhabited and without communications of any kind. Every road and path had to be cut and cleared. Along both banks of the river, from Sanpe village, in sheet $95 \frac{\mathrm{~L}}{4}$, to the 'north limit of the season's work, roads had to be cut, to make mule transport practicable.

The provisioning and rationing of the camps employed in Mergui presented great difficulties, and was a source of heavy expenditure. The head-quarters of the camp officer was 14 stages by boat from Mergui. In the country itself no provisions of any kind, except a few fowls, were procurable. Rice in sufficient quantity for the use of local coolies on duty with the various camps was not obtainable. These coolies had to be provisioned by the party. As far as Tatmu on the banks of the Tenasscrim river and eight stages from Mergui, the river is practicable for moderate-sized boats. From this point up, only dug-outs can be used.

Kyaukpya, situated on the Tenasserim river, and 4 stages higher up than Tatmu, was selected as the head-quarters of one of the camps into which the party was divided. From it the mule transport was used for the distribution of supplies to the surveyors working in the field.

Plane-tabling.- The party was divided into four field camps as follows:-
No. 1 Camp, under Mr. Lachman Daji Jadı, R.B. with Mr. Hart and seven surveyors completed the survey, on the one-inch scale, of 842 square miles in sheets $95 \frac{\mathbf{K}}{15(\text { part), } 18(\mathrm{Dart)}}$,

No. 2 Camp, under Mr. P. C. Sen Gupta with seven surveyors completed the survey, on the two-inch scale, of 282 square miles of the Heinze and Kaleinaung reserved forests in sheets $95 \frac{\mathrm{~J}}{1,5}$, in the Tavoy district. It also ran 65 linear miles of simple and boundary traversing.

No. 3 Camp, under Mr. Dalbir Rai with three surveyors completed the survey; on the one-inch scale, of 316 square miles in sheets $95_{8(\operatorname{marth}, 12}$ in the Mergui district.

No. 4 Cump consisted of four surverors and completed the special survey, on the fourinch seale, of 35 square miles in the Kyunchamg, Bawchang, Mezali, Megwa and Thinganayinanner reserved forests in shects $95-\frac{1}{2,6,7}$, Amherst district, and of 70 square miles of supplementary triangulation and is linear miles of boundary traversing. The direction and control of the work of this camp was under the officer in charge of the party, while the actual checking of the plane-tabling in the field was done by surveyor Muhammad Yusuf Khan, in addition to the triangulation and traversing above mentioned. The officer in charge of the party had not time to visit the surveyors a second time.

The cost-rates for the different classes of survey are as follows:-

Original one-inch	Rs. $7 \% \cdot 4$	per square mile.		
Original two-inch	Rs. 120.8	,	"	"
Original four-inch	Rs. $173 \cdot 7$	"	"	"

These cost-rates appear to be high, but this is due to the long distances that had to be covered, across practically minhabited and roadless country, before work could be started; to the heavy expenditure on account of transport for conveyance of supplies; and to the stoppage of work for nearly a month owing to incessant rain. The cost of buat hire alone, for the carriage of supplies to No. 1 Camp, in the I'cuasserim valley, was over Rs. 1,000/- monthly. Approximately 300 miles of road was cut and cleared in the Tenasserim valley for mule transport. During the past three seasons the party has been moving up the valleys, and conseguently getting further away from its base of supplics. l'or the one-inch work, the average out-turn per man for ${ }^{2} 4$ working days is higher this season than in the previous year, being 27 square miles against 20 square miles.

The high cost-rate for the four-inch detail survey is due to the seattered nature of the work. The small arca surveyed was spread over seven reserves. Supplies were not procurable locally, and had to be imported from Moulmein, over a distance of about 120 miles.

The same remarks apply to the cost-rates for two-inch work. In the area of 2 -inch survey there was much prospecting for wolfram being done and the daily rate for labour was

Rs. 1/4/- to Rs. 1/8/-. With the exception of one road leading into Siam, all others to the main watershed had to be cut and cleared.

Trianyulation.-New triangulation was carried out over an area of 2,780 square miles by Mr. Picard in sheets $94 \frac{\mathrm{H}}{16 \text { (purt) }}, 94 \frac{\mathrm{~L}}{4,8,12(\text { parts })}, 95 \frac{\mathrm{E}}{0,10,13,14}, 95 \frac{\mathbf{1}}{1,2,5,6,7,9,10,11}$, in the Amherst district. The cost-rate per square mile is Rs. $7 \cdot 6$.

The country triangulated consisted of a series of ranges, extending from the BurmaSiam boundary to the sea-coast, drained by the waters of the Ye, Ataran, Zami, and Haungtharaw rivers, and having a mean elevation of between 3,000 and 4,000 feet. Some of the peaks in the extreme east rise to over 6,000 feet. The country is fairly well inhabited and supplied with cart roads and bridle-paths. The Irrawaddy Flotilla Company has a daily steam-launch service between Moulmein and Kya-in Seikkyi, about sixty miles south, the head-quarters of the township of the same name. A large part of the area triangulated is reserved forest. The hills are heavily wooded, those inland being steep and precipitous. A peculiar, and interesting, feature in the country are the out-crops of lime-stone rock in the plains aud valleys. These take the form of a series of steeply carved hills rising sheer from the base to elevations ranging from a 100 feet to 2,000 feet. Hot springs are found at the bases of several.

Recess Duties.- (a) In recess the party was divided into three sections.
The drawing office was under the supervision of Mr. French during the field season, and was taken over by Mr. Hart in June 1918, on Mr. French's transfer to the Southern Circle. During the year under report 15 one-inch sheets were submitted for publication. The fair-mapping done comprised $1, \delta 11$ square miles on the one-inch scale in sheets $93 \frac{\mathrm{c}}{5,9}$, $93 \frac{\mathrm{~B}}{8,12}, 95 \frac{\mathrm{~J}}{6}, 95 \frac{\mathrm{~K}}{15,16}, 95 \frac{\mathrm{~L}}{6,7,11,12,13,15,16}$ and $95 \frac{\mathrm{P}}{2,4,6,7} ; 2,501$ square miles, on the halfinch scale, in sheets $93 \frac{A}{\text { N.E., S. E. }}, 93 \frac{\mathrm{E}}{\mathrm{S} . \mathrm{W} .}, 93 \frac{\mathrm{I}}{\mathrm{N} . \mathrm{W} .}$; also 1,375 square miles, on the quar-ter-inch scale, in sheets 93 E . and 93 J .

Blue prints and traces of particular areas in the Tavoy and Mergui districts were prepared and supplied to the district officials in the interests of mining and forest operations.

Mr. Kenny supervised the fair-mapping of a further 631 square miles on the one-inch scale in sheets $95 \frac{0}{3,4}, 95 \frac{\mathrm{P}}{8,12}$. Also the forest boundary plots, on the four-inch scale, of the areas surveyed in the Amherst district.

The whole of the area surveyed on the one-inch scale will be fair-mapped before the party takes the field again.

The areas of mapping executed and the cost-rates for each scale are as follows:-

| $2,1+2$ | square | miles | on the one-inch scale at Rs. $9 \cdot 0$ |
| :--- | :--- | :--- | :--- | per square mile.

The higher rates for mapping are due to a great deal of sickness this recess amongst the surveyors and draftsmen. During the influenza epidemic, more than half the party was laid up for nearly a month.
(b) A section, under Mr. Picard, was employed on completing the computations left unfinished from the previous season's work, the computations of the current field season's triangulation, and the preparation of degree triangulation charts $95 \mathrm{~L}, 95 \mathrm{O}, 95 \mathrm{P}$. It has not been possible to make much progress with the computations for the current season's triangulation, owing to lack of fully trained computers in the party. It is hoped during the coming field season to be able to complete the computations. The degree triangulation charta are well advanced, and should be disposed of next recess.

Miscellaneous.- Last field season, on account of the limitations imposed on the number of menials that could be recruited from Hazäribagh, the deficit was made up by the employment of ticket-of-leave men, supplied by the Burma Goverament. The employment of prison labour in mines and public works departments had been tried by the Local Government in the previous year, with certain amount of success, and its introduction into the Survey of India was regarded as a promising experiment. The innovation was a failure, from the points of view both of economy and efficiency. The prisoners were conditionally released for the period they had contracted to serve. The rate of pay fixed by the Local Government was Rs. 18/- per mensem. They were collected, from the various jails in Burma, at Rangoon whence conveyed under police eacort to Mergui and there handed over to the party on each signing a contract
bond. With the exception of a few, these men were taken over by the party practically destitute. 'Ihey had to be provided with clothes, bedding, shoes, cooking pots and pans etc. and had to be fed by the party till they took the field. The restrictions which had to be imposed while they were in service with the party, their rationing, disbursement of pay in small amounts, roll-calls, police reports etc., made the undertaking quite an onerous and troublesome one. The upseej of the supply of rations was most troublesome. The demands for supplies made by these men were extravagant in the extreme, and the compliance with these only to the extent of the necessaries of life, was the cause of much discontent.

Physically also the men were a total failure. Large numbers at a time were invalided with malarial fever, from the effects of which they never seemed to recover. They were not amenable to discipline imposed by Indian surveyors, though willing to submit to it under a European.

The season's operations along the Burma-Siam boundary disclosed errors in the position of the watershed as shown on the existing maps to the scale of 8 miles $=1$ inch. As the position of the boundary depends on that of this watershed, it seems probable that the geographical position of the former needs revision on the old maps. The matter was reported to the Deputy Commissioner of Mergui.

4 surveyors and 1 draftsman were transferred from the party for work overseas, in Mesopotamia and East Africa, during the recess season.

No. 12 PARTY (ASSAM).

By H. W. Biggie.

This party continued topographical operations in the Assam valley in the Lakhimpur and Sibsāgar districts and the Central and Eastern
Prrsonnel.
Provincial Officers.
Mr. H. W. Biggie, in charge
,. E. G. Hurdinge.
, Pramadaraujan Ray, R.s.
,, Prufulla Chandra Mitra, B. A.
, K. S. Gopulachari, B. A.
Upper Subordinate Service.
Mr. Girijn Sonker Bagchi.
Lower Subordinate Service.
29 Surveyors. etc.
Sections of the North-East Frontier Tract. The country worked over lies mostly in the alluvial plains of the Brahmaputra river and includes, on its southern limits, the northern slopes of the hills bordering the Näga tribal area, which rise here to i, 000 feet above sea-level. A small area of 37 square miles was surveyed in Sikkim and Bhutān in connection with the settlement of a portion of the inter-state boundary.

The field season extended over a period of about five and a half months, from November to the middle of April, during which time the headquarters of the party remained at Dibrugarh.

The health of the party was not entirely satisfactory during the field season, at the commencement of which the officer in charge was laid up for two weeks in Shillong and the arrangements at Dibrugarh for starting field work were delegated, as a temporary measure, to Mr. Hardinge. These arrangements were much delayed by the menial strength of the party from Hazāribaggh having to go into quarantine on their arrival, due to an outbreak of cholera en-route, which resulted in four deaths out of seven cases. Subsequently malarial fever aud scabies were the chief forms of sickness among menials. Mr. Bagehi was laid up with fever for about ten days. Among the lower subordinates there were four cases of illness more or less prolonged. One of these men had to be sent home on medical leave soon after taking the field. Another surveyor who suffered during the field seasou from malarial fever in a mild form, became worse after reaching his home, and died there while on departmental leave.

Plane-abling.-The greater fortion of the comntry that came under survey is covered with dense forest, consisting of trees and bambons with undergrowth of scrub, cane and thorny creepers. Low hills rising to an altitude of about (6a) feet above sea-level were met with in the Upper lihing forest reserve and in the oil-producing area round Digboi, in sheet $83 \frac{\mathrm{~m}}{\frac{\mathrm{~m}}{11}}$. In the Jaipur forest reserve, in sheet $83 \frac{\mathrm{a}}{\mathrm{B}}$, the hills attain an altitude of about 1,600 feet above sea-level. Elsewhere the country plane-tabled was generally flat. The forests of the Assam valley contain numerous swamps generally known as bil or daloni, which, in places, occur in almost continuous stretches and are never, at any time of the year, entirely free from damp.

They favour a luxuriant growth of knotted masses of evergreen vegetation, in which the thorny cane was the surveyor's worst enemy. Elephant grass occurs here and there. Leeches were also a great source of trouble, and the usual precaution of providing leech-bite socks was adopted, and found to be a sufficient protection. Besides the Brahmaputra river, which flows in a south-westerly direction, the Dibāng, Dihāng, Lubit, Läli, Burhi Dihing, Dibru and Disang are the only other streams of importance. The open parts of the area that came under survey contain numerous tea gardens and rice cultivation. There are a few grood winter roads maintained by Grovernment agency-private enterprise on the part of garden managers has led to the construction of good motorable roads in tea areas, but permission for carts to use these roads is not generally given. A few foot-paths are the only means of communication in the forest-clad portions of the area dealt with.

The detail work in the field was divided into two camps.
That under Mr. Hardinge, with seven surveyors and two pupils, surveyed 608 square miles on the one-inch scale and 62 square miles on the two-inch scale in sheets $83 \frac{\mathrm{M}}{9,12,14,15,18 \text { (parta) }}$ and $83 \frac{\mathrm{M}}{10,11}$.

That under Mr. Pramadaranjan Ray, R.S., with Mr. Gopalachari, one Sub-Assistant Superintendent, ten surveyors and three pupils surveyed 539 square miles on the one-inch scale and 129 square miles on the two-inch scale in sheets $83 \frac{\mathrm{M}}{5,8 \text { (parts) }}$ and $83 \frac{\mathrm{M}}{6,7}$.

For the most part the method of surveying was based on traversing with the chain and compass, the plane-table being set up at alternate stations. To help visibility through foliage in jungle, the clearing of which would have entailed an inordinate expenditure of time and labour, small mirrors were used as signals by both back and forward flag men. Rays to objects lying on either side of the chain and compass traverse were taken to sound with sufficient precision up to short distances. The method of checking work in jungle-clad country was the same as that adopted in surveying it. The party's elephants were found to be invaluable as a means of transport in forest areas, and enabled the work of surveyors in those areas to be efficiently checked.

In addition to the areas of 1 -inch plane-tabling mentioned above, the survey on that scale of 3 square miles of country along the proposed alignment of the Sibsägar-Näga Hills district boundary, in sheet $83 \underset{-\mathrm{J}}{13}$, was carried out in connection with the settlement of that boundary. These portions of this boundary had remained unsurveyed when the survey of the remainder had been carried out in the previous season. The cost-rates per square mile for one-inch and two-inch surveys are respectively Rs. $33 \cdot 9$ and Rs. $104 \cdot 4$.

The area of 37 square miles surveyed on the one-inch scale in Sikkim and Bhutan lies in the Himalayas, and ranges in altitude from 6,000 to 12,000 feet above sea-level. It is densely clad in forest growth, and was surveyed by surveyor Amrit Ram. The cost-rate for this survey was Rs. $18 \cdot 0$ per square mile.

The portion of the district boundary between Sibsägar and Darrang, where it crosses the Brahmaputra river along a straight aligoment, in sheets $83 \frac{\mathrm{~F}}{0,10}$, has been shown on the map to accord with the alignment of the topographical survey of 1914-15, the point marking the northern end of the alignment of this boundary having been washed away with the river bank on which it stood. This point was refixed on the north bank on an extension of the alignment of $191+15$. Cairns were built over the points marking the position of the alignment on each bank of the river where, as relayed in 1917-18, it crosses it. Each point has two reference pillars or cairns erected near it, but on safe ground, and either point, and its two reference marks lie in a straight line. The distances in chains from each point to the nearer of its two reference marks, and thence to the second mark, were recorded on the original field section, and, with the help of this information the direction of the alignment can be relaid in the future, if necessary. The work was done on the one-inch scale by Mr. Mitra and cost Ras. al 4.

Triangulation.-A little supplementary triangulation, which was to have been done in sheet $83 \frac{\mathrm{~m}}{\mathrm{H}}$ to help the survey of the hills in the Jaipur reserve, had to be abandoned. Owing to the extreme rlensity of the jungle covering flat-topped knolls, it was found impossible to obtain intervisibility betreen selected points of observation and stations of previous triangulation. Even the attempt to provide intersected points from G. T. stations had to be given up, as nobody conld be found who could climb the very tall, massive trecs which were
selected for flags or signals. Some of these rose to a height of 180 feet. It was decided to base the work on existing traverse stations, and, with care in the method of traversing with the chain and compass, these were found sufficient for purposes of survey.

Traversing.-The greater portion of the area traversed is low-lying and densely wooded. Village-sites are wide apart over the area, but are more numerous along the main roads and rivers. In the more open parts there are tea gardens and rice cultivation. The work was under Mr. Mitra with seven traversers, and lay chielly in sheets $83 \frac{1}{2,3,4,6,7,8,10,11,14}$. Of the total of 620 linear miles traversed, 51 linear miles consisted of traversing of artificial boundaries of reserved forests, 211 of the stations of observation were permanently marked, and 281 were marked with zinc cylinders.

The cost-rate per linear mile for 578 miles of traversing for topographical survey and 51 linear miles of traversing of artificial forest boundaries is Rs. 37.9 and Rs. $21 \cdot 7$ respectively.

The cost-rate per square mile for the area of 1,519 square miles traversed is Rs. 15•]. Recess Duties.-(a) The fair-mapping was divided into two sections.
No. 1 Section, under Mr. Hardinge with eight surveyors, did the fair-mapping of sheets $83{ }_{0, \overline{12}, \frac{11}{15,16(\text { murts })}}, 8: 3 \frac{\mathrm{y}}{10, \overline{11}}$ and a small area in sheet $83 \frac{\mathrm{M}}{14}$ which was fair-mapped as an outrigger to sheet $83 \frac{\mathrm{M}}{10}$.

No. 2 Section, under Mr. Pramadaranjan Ray, R.S. with one Sub-Assistant Superintendent and seven survejors, did the fair-mapping of sheets $83 \frac{\mathrm{M}}{5, \mathrm{~B}(\text { parta })}$ and $8: 3 \frac{\pi}{6,7}$.

Mr. Gopalachari worked with each section for equal periods.
Most of the fair-mapping was done ou blue prints for direct-mapping. The process of transferring from traces either enlarged or reduced was adopted for 129 square miles of one-inch work and for the whole of the two-inch work surveyed during the year under report. An area of 53 spuare miles in the Upper Dihing reserve, West Block, surveyed in seasons 1913-1915 on the four-inch scale, was first re-drawn on blue prints to scale of the four-inch published shects. Reductions from these drawings were then prepared for use by the transfer process. For the remaining portion, 45 square miles, of this reserve, which was survered on the two-inch scale in 1912-14, reductions from the two-inch published sheets were prepared for use by the transfer process.

The total area fair-mapped for publication on the one-inch scale is 1,387 square miles, and was carricd out at a cost of Rs. $16 \cdot 8$ per spuare mile.
(b) Mr. P. C. Mitra, with four traversers and computers, completed the computations of traverses rum in field season 1917-18 for detail survey in the following year, and the preparation of fuur-inch plots of traverses of artificial boundaries of reserved forests for the Forest Department.

Miscellaneous.-Owing to war conditions there was difficulty in procuring the full complement of Hazāribägh khalasis. To make up the deficiency the Superintendent, Eastern Circle imported 22 men from Gonda and the officer in charge No. 9 Party arranged for 30 Kols from Singhbhūm. The men from Gondā arrived carly in December. They were of a poor type, physically, and unsuited for work in the jungles of Assam. They clamoured frequently for their release, and after they had refunded their advances and paid the half-cost of warm-clothing issued to them they were allowed to go back to their homes with the least delay.

Owing to elpphant-catching operations in the Dibru reserve, the work of two surwors employed there was temporarily stopped. They were employed elsewhere until the emid of Mareh, and returned with three other surveyors to complete the area in the reserve in Λ_{1} rill.
'lhe unsettled condition of the boundaries dealt with was again a source of delay, and necessitated numerous references. The Deputy Commissioner, Lakhimpur was requested to have the aligument of the new boundary of the Lakbimpur Frontier 'Iract demarated for purposes of survey, and he very kindly deputed Maulvi S. S. M. Chisti, Sub-Deputy Collector, Tinsukia Cirele for this duty. The alignment as demarcated has been surveyed and shown on the fair-sheet and the question of its acceptance is now before the Deputy Commissioner for approval.

Owing to supplies not being obtainable locally, rice and dal had to be sent periodically to three surveyors and their squads working in the Dibru reserve and in the North-East Frontier Tract in the area adjoining the reserve.

TABLE I.
OUT-TURNS OF PLANE-TABLING 1917-18.

scale.	Clase of Survey.	Circle.	Party.	Locality.	$\begin{gathered} \text { Out-turu, square } \\ \text { miles. } \end{gathered}$		Average number of finings per square inile.	
					Totul.	Average per man per month of $2 t$ working dny.	In situ (by resection).	Plane-tanble truverse.
$\frac{1}{8}$-incb	Original Survey	N	No. 2	Kājputāna ...	1,286	$73 \cdot 6$	$5 \cdot 9$	
		s	No. 6	Hyderāload ...	6,675	$53 \cdot 8$	6.2	
		E	No. 10	Upper Burma ...	2,501	$76 \cdot 3$	0.7	0.9
1-inch	Original Survey	N	No. 1	Chamba State ...	7	$28 \cdot 0$	6	
		s	No. 5	Berār and Central Provinces	570	$29 \cdot 1$	$7 \cdot 9$	
		S	No. 7	Madras ...	2,940	28.8	$7 \cdot 9$	$2 \cdot 7$
		S	No. 8	Madras	432	$15 \cdot 5$	$8 \cdot 6$	$8 \cdot 1$
		E	No. 9	Bengal ...	2,184	$39 \cdot 1$	$6 \cdot 2$	$6 \cdot 0$
		E	No. 10	Upper Burma ...	824	$25 \cdot 6$	$2 \cdot 0$	17.4
		E	No. 11	Lower Burma ...	1,158	$27 \cdot 4$	$1 \cdot 6$	1.8
		E	No. 12	Ansam, Siktim and Bhutān	1,187	$19 \cdot 9$	$0 \cdot 4$	$20 \cdot 9$
1-inch	Revision Survey	N	No. 1	Punjab ...	347	$26 \cdot 8$	14	
		N	No. 3	United Provinges ...	105	30	$7 \cdot 6$	
		S	No. 5	Berär ...	527	$48 \cdot 1$	$4 \cdot 3$	
		8	No. 8	Madras $\quad .$.	155	16.1	$4 \cdot 8$	$4 \cdot 7$
		E	No. 9	Bengal ...	34	50.4	$5 \cdot 5$	$4 \cdot 6$
1-inch	Supplementary Survey	N	No. 1	Punjub and Simla Hill States ...	1,207	$24 \cdot 7$	10	
		S	No. 7	Madrab	478	$32 \cdot 8$	$5 \cdot 2$	$0 \cdot 2$
1娄-inch.	Original Survey	8	No. 6	Hyderābăd ...	138	$8 \cdot 9$	18.9	$33 \cdot 6$
12-inch.	Resurvey	s	No. 6	Hyderābād ...	271	$10 \cdot 9$	$15 \cdot 8$	$13 \cdot 1$
2-inch .	$\begin{aligned} & \text { Original } \\ & \text { Survey } \end{aligned}$	N	No. 3	United Provinces ...	459	$9 \cdot 2$.	$22 \cdot 5$	
		S	No. 7	Madrar $\quad .$.	163	6.7	$25 \cdot 2$	$17 \cdot 2$
		E	No. 11	Lower Burma ...	282	$8 \cdot 0$	$2 \cdot 7$	$39 \cdot 2$
		E	No. 12	Arbam ...	191	$5 \cdot 9$...	$62 \cdot 7$
8-inch	Original Surrey (Military)	N	No. 1	Punjab, North. Weat Frontior Province and Baluchistan ...	306.5	$7 \cdot 4$	6	
		N	No. 2	United Provinces and Delhi Provinee ...	187	$9 \cdot 1$	$49 \cdot 9$	

TABLE 1.-Concluded.
OUT-TURNS OF PLANE-TABLING 1917-18.—Concluded.

Scale.	Class of Survey.	Circle.	Party.	Locality.	Out-turn, aquaremiles.		A vernge number of Axings per equare mile.	
					Total.	$\|$Aversge per man per month of 24 worthing day. day.	In oitu (by resection).	Plane.table traverse
3-inch	Original Sur. vey (Military)	N S	No. No.	United Provinces ... Bombay	31 58	$4 \cdot 4$ $9 \cdot 3$	$53 \cdot 4$ $33 \cdot 7$	
	Resurvey (Military).	s	No. 5	Central Provinces	59	$9 \cdot 3$	$33 \cdot 7$	
		s	No. 6	Hyderābād ...	30	$5 \cdot 6$	$58 \cdot 7$	
		S	No. 8	Mybore ...	48	$6 \cdot 9$	$48 \cdot 6$	$22 \cdot 1$
4-inch	$\begin{aligned} & \text { Original } \\ & \text { Survey } \end{aligned}$	N	No. 3	United Provinces ...	122	3	$82 \cdot 5$	
		s	No. 7	Madras ...	45	$4 \cdot 3$	$29 \cdot 9$	$43 \cdot 7$
		F,	No. 11.	Lower Burma ...	35	$2 \cdot 6$	$6 \cdot 2$	151-3
4-inch	Supplementary Survey	N	No. 9	United Provinces ...	144	$17 \cdot 6$	$23 \cdot 2$	
16-inch.	Original Sur. vey aud Ke survey							
		8	No. 20	Dathousie (Thatt Hill), Chaman, Manora, Erinpura, Agar, Jhānsi, Alimaduagar, Aurangābād, New Delhi and Hosūr Remount Depôt.	$\begin{array}{\|r} \text { ncres } \\ 26,527 \end{array}$	$\begin{gathered} \text { acres } \\ 279 \cdot 2 \end{gathered}$		
64-inch .	Original Sur vey and Resurvey	S	No. 20	Manora, Erinpura, Agnr, Jhānsi, Ahmadoagar, Au. rangäbād, New Delhi and Hosūr Remount Depôt.	314	$21 \cdot 4$		

TABLE II.
DETAILS OF TRIANGULATION AND TRAVERSING 1917-18.

					TRIANGULATION									TELVEESING.				
Scale.	Class of Survey.	安	Party.	Locality.							\square		Ts.	Area in bquare miles.				Lineer error per 1,000.
3-inch .	Military Survey	N	No. 1	Punjab •	6	\ldots	\cdots	\ldots.	\cdots	\cdots	\ldots	\ldots	\cdots	...	$23 \cdot 6$	22	$1 \cdot 1$	$0 \cdot 4$
3 -inch .	Military Survey	N	No. 2	United Provinces .	5	40	$1 \cdot 1$	1-2	6	21-7	\cdots	29	$0 \cdot 81$	\ldots	$54 \cdot 7$	116	1.0	0•5
4-inch .	Special Forest Resurvey and Revision Survey.	N	No. 2	Ditto .	$5 \& 6$	156	$1 \cdot 0(a)$	$1 \cdot 0(a)$	52	$10 \cdot 9$	$0 \cdot 40$	102	$3 \cdot 00$	\ldots	175•1	2,425	5.8	$2 \cdot 5$
4-inch .	Traversing	N	No. 2	Ditto	6	\cdots	\ldots	...	\cdots	\cdots	\cdots	\cdots	\cdots	\ldots	$20 \cdot 0$	296	$5 \cdot 9$	$0 \cdot 7$
1-inch .	Traversing	N	No. 3	Ditto	5	\ldots	\cdots	\cdots	\ldots	\cdots	\cdots	\cdots	...	\cdots	290	1,715	4.2	$1 \cdot 4$
l-inch •	Triangulation -	N	No. 3	Ditto	6	334	(b)	(b)	13	(b)	(b)	290	(b)	\cdots	\cdots	\cdots	...	\ldots
2-inch .	Ditto	N	No. 3	Ditto	6	758	(b)	(b)	4)	(b)	(b)	1,015	(b)	\cdots	\cdots	\cdots	\therefore	\cdots
3-inch -	Ditto .	N	No. 3	Ditto .	6	30	$1 \cdot 0$	$1 \cdot 0$	2	3	$1 \cdot 4$	27	$0 \cdot 6$	\cdots	\cdots	\cdots	\ldots	\cdots
4-inch .	Traversing	N	No. 3	Ditto	5	\cdots	\cdots	...		\cdots	\ldots	\cdots	\ldots	\cdots	25	398	$2 \cdot 9$	$11 \cdot 1$
1-inch .	Original and Revision Survey	S	No. 5	Central Provinces	6	2,747	$5 \cdot 8(a)$	$5 \cdot 8(a)$	75	10-5	$0 \cdot 36$	395	$0 \cdot 65$	\cdots	\cdots	\cdots	\cdots	\cdots
$\frac{1}{2}$-inch, 1 -inch and $1 \frac{1}{2}$-inch.	Original Survey .	S	No. 6	Hyderābād and Madras .	6	6,408	(b)	126	95	853	$3 \cdot 5$	$0 \cdot 7$						

[^0]TABLE II-Concluded.

Beale.	Class of Survey.	苟	Party.	Locality.	triangulation.									TRAVERSING.				
									Statione.			$\begin{aligned} & \text { Intersected } \\ & \text { Points. } \end{aligned}$						
1-inch and 2-inch.	Original and Supplementary Survey	S	No. 7	Madras	6	2,723	$6 \cdot 8(a)$	(b)	43	9•0	$0 \cdot 16$	356	$0 \cdot 44$	\ldots	\cdots	\cdots	\cdots	\cdots
1-inch .	Original and Supplementary Survey	S	No. 8	Madras .	\ldots	\cdots	\cdots		\cdots	\cdots	\cdots	\cdots	\cdots	2,344	741	2,384	$1 \cdot 6$	$0 \cdot 5$
16-inch and 64-inch.	Original Survey and Re-survey	S	No. 20	Dalhongie, (Thatt Eill), Manora, Erinpora, Agar, Aurangābād, Sētãra, Now Delhi, Secunderábād, and Bolārum, Bellary and Hosúr Remozal Depôt.	$5 \& 6$	272	$24 \cdot 7$	$30 \cdot 2$	8	17.1	$1 \cdot 0$	3	$1 \cdot 0$	43	356	3,223	$3 \cdot 5$	$1 \cdot 0$
l-inch .	Original and Revision Survey	E	No. 9	Bengal -	\cdots	\cdots	\ldots	\ldots	\cdots	\cdots	\cdots	\cdots	\ldots	2,020	831	2,546	$6 \cdot 8$	$1 \cdot 1$
$\frac{1}{2}$-inch .	Original Survey	E	No. 10	Upper Burma	6	2,804	$11 \cdot 0$	$11 \cdot 6$	33	$11 \cdot 8$	$0 \cdot 88$	223	$2 \cdot 12$	\cdots	\cdots	\cdots	\cdots	\cdots
l-inch .	Original Survey .	E	No. 10	Do. .	6	280	12.2	12•2	2	$10 \cdot 0$	0.32	21	3.38	\cdots	\cdots	\cdots	\cdots	\cdots
1-inch .	Original Survey .	E	No. 11	Lower Burma .	6	2,780	$7 \cdot 1$	$7 \cdot 1$	32	$9 \cdot 0$	$0 \cdot 16$	360	$0 \cdot 40$	\ldots	\cdots	\cdots	\cdots	\cdots
2-inch .	Original Survey .	E	No. 11	Do. -	6	\cdots	\cdots	\ldots	\ldots	\ldots	\ldots	\ldots	\cdots	\cdots	65	1,180	$0 \cdot 2$	$3 \cdot 9$
4-inch .	Original Survey .	E	No. 11	Do.	6	70	$1 \cdot 4$	$1 \cdot 4$	8	$25 \cdot 0$	$0 \cdot 40$	41	$0 \cdot 83$	\cdots	68	1,205	$0 \cdot 1$	$1 \cdot 4$
1-inch and 2-inch.	Original Survey .	E	No. 12	Assam .	\cdots	1,519	629	5,145	2•7	$2 \cdot 0$								

TABLE III.

* Additional points, previoualy fixed, will wheo be ueed
TABLE III.-Coneluded.
COST-RATES OF SURVBY 1917-18.-Coneluded.

PART II.-GEODETIC AND SCIENTIFIC OPERATIONS.

TRIGONOMETRICAL SURVEY. ASTRONOMICAL LATITUDES AND PENDULUM OPERATIONS.

Nos. 13 AND 14 PARTIES.
By Major H. McC. Cowie, R. E.

Personnel.

Imperial Offecr.
Major H. McC. Cowie, R. E. in cbargo.
Lower Subordinate Service.
No. 13 Party 1 Computer.
No. 14 Party 1 Computer.

War conditions still continuing during the year under report, no latitude or Pendulum operations were carried out and the personnel of these parties was employed at the Head Quarter Offices and in contiuning the calculation of the Hayford reduction for Pendulum stations in India.

NO. 15 PARTY (TRIANGULATION).

By H. G. Shaw.

Peasonnel.

Imperial Officer.
Major E. A. Tandy, R. E., in charge from 12th October 1917 to 15th May 1918.

Provinoial Officers.
Mr. H. G. Shaw, in charge up to 1ith October 1917 and from 16th Mey 1918.
(1) L. Williams up to 31 st Augast 1918.
, K. B. Mathur, B. A., up to 8th September 1918.
„ Abdul Karim, B. A., from 15th October 1917.
, N. N. Chuckeroutty, L. C. E., from 18th Octobar 1917 to 14th August 1918.

Opper Subordinate Service.
Mr. Jugal Behari Lal。
Lower Subordinate Service.
13 Computers, etc.

siud-sägar Doaib Trianqulation.- Four detachments were employed on the work mentioned in (1) above, which was carried out as follows:-

No. I Detachment under Mr. I.. Williams carried out observations from Abhāswäla 'T. S. and Mabiwàla T'. S. of the Great Indus Series, near Sanāwã in Muzaffargarh district, up to the vicinity of Khushāb in Shähpur district.

No. 2 Detachment under Mr. Raj Bahalur Mathur arried out observations from Shähpur 'T. S. and Mohammad Shiah T. S. of the Great Thelus Sories, nopr Leiah in Muzaffargach district, up to the vicinity of Miänwàli and also laid out and built a small cross series making conuection with the series of No. 1 Detachment.

No. 3 Detachment under Mr. Abdul Karim laid out and built the series from Nūrpur southward, half way to Sanāwān, and observed the small series connecting No. ${ }^{2}$ Detachment's work with Almad Sindi T'. S. and Miani T'. S. of the Great Indus Series, and assistel Nos. 1 and 2 Detachments in making the final connection of their series with the G. T. Stations in the hills nowth of the Sincl-Sigar Doanb.

No. 4 Detachment muder Mr. Jugal Behani Lal laid out and buitt the series from Sanāwān northward, half way to Nūrpur, and observed the small series built by Mr. R. B. Mathur. Towards the end of March 1918 this detachment was sent to Khewra and amalgamated with the Khewra Detachment.

The observations of the triangulation, which was in character midway between Minor and Geodetic, were carried out with 6 -inch micrometer theodolites. At each station measures were made on four zeros, namely :-

$$
\frac{\text { R } 0^{\circ}-1^{\prime}}{\mathrm{L} 180^{\circ}-1^{\prime}}, \frac{\mathrm{L} 45^{\circ}-9^{\prime}}{\text { B } 225^{\circ}-2^{\prime}}, \frac{\mathrm{B} 90^{\circ}-4^{\prime}}{\text { L } 970^{\circ}-4^{\prime}}, \frac{\text { I } 135^{\circ}-6^{\prime}}{\text { R } 315^{\circ}-6^{\prime}} .
$$

The measures on each zero included four swings, two clockwise and two counter-clockwise, thus the total number of measures of each angle was 16 .

The signals observed to were:-
(a) Helios when practicable.
(b) Opaque signals.
(c) Ordinary hurricane lanterns raised to a few feet above the station marks.

Owing to the nature of the country, which consisted of scattered sand mounds of almost uniform height, helios could only be used at a few of the stations, and it was necessary to resort to opaque signals. These were of a type not previously used for triangulation and it will be useful to put a description of them on record for future work in similar country. The signal-poles were made of galvanized iron and were similar in appearance to ordinary telegraph posts. For convenience of transport a pole was made up of three or four sections constructed so as to fit together and form a hollow upright post 20 to 30 feet high. These were placed over the station pillars and guyed down by ropes fastened to tent pegs diven in. the sand. A bamboo basket covered with cloth, shaped in the form of a sphere, by means of hoops, was placed on the topmost section and was used for intersection. To facilitate correct centering and to test the verticality of the signal, a plummet was suspended from the basket through the hollow upright. An aperture was cut in the bottom section at the base of the signal so that it could be seen whether the plummet was accurately over the station mark. These signals proved of very great assistance throughout the work.

Owing to abnormal refraction at night, it was found that ordinary hurricane lanterns, raised about four feet above the ground, were clearly visible where high signals were necessary during the day. The use of lanterns at night accelerated the work a good deal and night observations were attended with marked success.

All four detachments left Dehra Dūn early in November 1917 and after completing the programme, Nos. 1,2 and 3 Detachments returned to recess in Mussoorie in the beginning of April 1918.

No difficulties or impediments were entountered in the execution of the work except fur ray clearing between Abbāswāla T. S. and Mähíwāla T. S in the beginning of the season, and abnormally wet and cloudy weather in the latter half of March 1918. The health of the detachments on the whole was good throughout the season.

Comprtations.-Major Tandy has supplied the following note in regard to the grinding aud distribution of the closing errors of this triangulation :-"The results were urgently required by the Sind-Sagar Party, and I therefore arbitrarily disposed of the closing errors as follows :is complete chart was made showing the discrepancies in latitudes, longitudes, azimuths, and log. sides, for each side where series emanating from G. T. bases met one another. By a careful inspection of these discrepancies definite values for each of these closing sides were adopted, and the resulting corrections entered against them on the Chart and gradually distributed backivards through the sides of each series.

These corrections were then read off from the Chart and applied to the computed valucs of all sides before converting them into the rectangular values required by the SindSāgar Party. After it was too late to make any change, it was found that the triangle Nikru Sbahid, Nawa Sighu, Sidha, near the northern junction of all the series, had been wrongly computed, the \log. cosec. being too large by $0 \cdot 00001$. Fortunately the grinding was found to Lave cleared off this error from the bases immediately affected, but the necessity for distributing it must have rather spoilt the satisfactory grinding of all neighbouring parts of the work".

Survey of the Mayo Salt Mine, Khewra, Jhelum District, Punjab.-A special detachment carried out this work under Mr. N. N. Chuckerbutty. The nature of the work is described in Part II of the General Report for 1917-1918, and full particulars are to be found in a special pamphlet entitled "Survey of the Mayo Salt Mine", which has been printed at the Trigonometrical Survey Office for the use of the Salt Department.

No. 16 PARTY (TIDAL OPERATIONS).
By O. C. Ollenbach.
Tidal registrations by means of self-registering tide-gauges were continued during the year under report at the following ports :-

Pribonnel.
Provincial Officers.
Mr. O.C. Ollenbach, in chage from 29th October 1917.
, Syed Zille Hasnain, K.S., in charge till 28th October 1917.

Lower Suhordinate Service.
20 Computers, \&c.

Aden, Karāchi, Appollo Bandar (Bombay), Prince's Dock (Bombay), Madras, Kidderpore, Kangoon, Moulmein and Port Blair. The work is carried out under the direction of this department, but the immediate control of all the tidal observatories is entrusted to the local officers of the ports concerned.

In addition to the automatic tidal registrations at the alove ports, readings of high and low water were taken during day-light on tide-poles at Bhaunagar, Akyab aud Chittagong throughout the year for the purpose of checking the corresponding predictions which were based on observations taken some years ago.

TIDAL OBSERVATIONS AT BASRAH.

Hourly readings of a tide-gauge at Basrah were supplied to this department throughout the year by the Director Inland Water 'Transport, Mesopotamia. The readings for the year commencing lst January 1917 were reduced by the method of harmonic analysis and the constants thus deduced were used in the computation of data for the tide-tables for Basrah for 1919. These data were forwarded on 10th April 1918 to the National Physical Laboratory Teddington, England, where tidal predictions were made from them with the aid of the tide-predicting machine. A set of the predictions was received from the Laboratory on 29th August 1918. The tide-tables for Basrah for 1919 are being printed at the Trigonometrical Survey Office at Dehra Dūn and will be despatched to the Director Inland Water Transport Mesopotamia in October 1918.

List of Tidal Stations.

The following is a complete list of the ports at which tidal observations have been carried out from the commencement of the tidal operations in 1874 up to the present time. The permanent stations are shown in italics; the others are minor stations which were closed on the completion of the requisite registrations.

List of Tidal Stations.

Working of the Observatobies.

The inspection of all the tidal observatories was carried out during the year, Mr. O. C. Ollenbach taking up the inspection of Aden, Karāchi, Bombay (Apollo Bandar), Bombay (Prince's Dock) and Madras, and Mr. Syed Zille Hasnain inspecting the remaining observatories. During the inspection of each observatory the tide-gauge and other instruments were thoroughly overhauled, cleaned and put in working order; the observatory well was cleaned and the inlet holes were examined; the level of the bed-plate of the tide-gauge was carefully tested by spirit-levelling between it and the bench-mark of reference, in order to ascertain whether any change had taken place in its position since the last inspection; the zero of each tide-gauge and graduated staff was also tested and adjusted; the observatory cabin was examined and arrangements were made for any repairs, if necessary.

The following remarks regarding the working of each observatory may be added:-
Aden.-This observatory continued to give trouble until it was inspected in December 1917. It was found that the tide-gauge had been badly neglected and the clerk in charge appeared to take little or no interest in his work. The inspecting officer brought the matter to the notice of the Chief Engineer of the port with the result that a better clerk was found and the observatory properly looked after. Since the last inspection the working of the observatory has considerably improved. There have been a few minor interruptions in the registrations of the tide-gauge due to the stoppage of the driving clock.

Karächi.-The tide-gange at this observatory has worked satisfactorily during the past year. The inlet hole in the well was temporarily blocked seven times, but was reopened each time as soon as the defect was noticed. The size of the inlet hole was increased from $\frac{1}{2}$ to $\frac{3}{4}$ inch in diameter last year and this greatly reduced the number of interruptions in the registrations of the tide-gauge due to the blocking of the inlet hole, which were very frequent last year.

Bombay (Apollo Bandar). -There was a break of about $2 \frac{1}{2}$ days in the registrations of the tide-gauge at this observatory in June 1918. It appears that the pin which holds the pencil wheel in its position dropped out and in consequence the wheel became loose on its axle and failed to work the recording pencil. This was put right by a mechanic of the Deputy Chief Engineer of the port and the gauge has worked well since.

Bombay (Prince's Dock).—Tidal registrations at this observatory were carried out satisfactorily up to the mildle of September 191\%. Owing to some friction the diagram paper, in passing over the central drum on which the recording pencil works, was constantly torn by the projecting pins fixed at the hour intervals near the top and bottom of the drum and this continued up to the 30 th November 1917. When the diagrams were finally examined at Dehra Dun before being read off, it was found that the times indicated by the clock, as entered on the diagrams by the observatory clerk twice a day, disagreed with the times marked on the diagrams by the projecting pins at the hour intervals. This defect started on 14th September 1917 and disappeared on 30th November 1917. The total discrepancy in time at the end of November was nearly two hours. The observations between the above dates were therefore rejected and the gap was filled by substituting observations taken at Apollo Bandar after applying the necessary corrections due to the difference of zeros at the two observatories.

Madras.-There have been no interruptions in the work of this observatory since the last inspection.

Kidderpore.-The tide-gange at this observatory has worked without a break during the past year. The observatory was found in a neat and tidy condition, having beeen built in April 1917.

Rangoon.-This observatory has continued to work well daring the year under report. At the time of the inspection in March 1918 it was found that the floor of the cabin needed repairs and the canvas stretched below the roof of the cabin was old and torn in places. The Deputy Conservator of the port was requested to have the cabin thoroughly repaired and to have a wooden ceiling fixed to the roof.

Moulmein.-The working of this observatory has improved since the last inspection. No interruptions have taken place in the tidal registrations. The inspecting officer, however, found the cabin in an untidy condition and in ueed of a thorough overhauling. The matter was brought to the notice of the Port Officer who was requested to do the needful. The old
graduated staff was washed away on 15th December 1917 and was replaced by a new staff when the inspecting oflicer visited the port in February 1918.

Port Blair.-The tide gauge at this observatory has, as usual, worked in a very satisfactory manner during the past year.

Computations and Reduction of Obselvations.

All the computations pertaining to the past year's work have been completed and there are no arrears. The tilal observations at the nine working stations for the year 1917 have been reduced by harmonic analysis. In addition, the observations taken at Basrah on a tidegauge erected by the military authorities and supplied to this department by the Director Inland Water 'Iransport for the year 1917 have been similarly treated. The tidal constants deduced from the above reductions are shown in the attached tables.

These tables give the amplitudes (R) and the epochs (ζ) at the various stations; they also give the values of H and K which are connected with R and ζ, through the various astronomical quantities involved in the positions of the sun and the moon, in such a way that if the tidal observations were consistent from year to year H and K would come out the same from each year's reductions.

$\begin{aligned} & \text { O} \\ & \text { B } \\ & 0 \\ & \text { O } \\ & \text { D } \end{aligned}$	ADEN				KARȦCHI				BOMBAY (Apollo Bandar)					
	$\mathrm{A}_{0}=5 \cdot 795 \mathrm{feet}$				$\mathrm{A}_{0}=7 \cdot 368 \mathrm{feet}$				$\mathrm{A}_{0}=10 \cdot 324$ feet					
	R	\checkmark	H	^	R	§	H	κ	R	\leqslant	H	*		
Short Period S_{1} \mathbf{S}_{1} S_{4}	$\left\lvert\, \begin{aligned} & 0 \cdot 0.42 \\ & 0 \cdot 665 \\ & 0 \cdot 002 \end{aligned}\right.$	\bigcirc					4. $0 \cdot 10$	$1 \begin{gathered}\circ \\ 180 \cdot 34\end{gathered}$	$34 \mid 0 \cdot 1$		0.072	$\begin{gathered} 0 \\ 189 \cdot 62 \end{gathered}$		
		201.80	0-042	201.80		$1 \begin{aligned} & 180 \cdot 34 \\ & 323 \cdot 21\end{aligned}$	$0 \cdot 101$ 0.987					$189 \cdot 62$ $3 \cdot 50$		
		$256 \cdot 93$ 312.88	$0 \cdot 665$ 0.002	$256 \cdot 98$ $312 \cdot 88$	0-908	$323 \cdot 21$ $38 \cdot 12$	0.987	\|r	r	r$323 \cdot 21$ $38 \cdot 12$	$1 \cdot 569$ $0 \cdot 025$	- $217 \cdot 56$	$1 \cdot 569$ $0 \cdot 025$	$3 \cdot 50$ $217 \cdot 56$
\mathbf{S}_{6}	0.002	254.06	0-002	254.06	0.007	274.76	$0 \cdot 007$	274.76	0-008	$130 \cdot 19$	$0 \cdot 008$	$130 \cdot 19$		
S_{8}	0.001	$225 \cdot 00$	$0 \cdot 001$	$225 \cdot 00$	0-002	43.15	0-002	43-15	$0 \cdot 004$	$342 \cdot 90$	$0 \cdot 004$	$342 \cdot 90$		
M_{1}	0.103	192.26	$0 \cdot 052$	357-97	0-104	201-94	0•052	- $8 \cdot 38$	0-104	20.4.4.6	0-052	11-11		
M_{2}	1.482	$63 \cdot 10$	$1 \cdot 492$	237-66	2-579	$118 \cdot 03$	2-597	294-08	3-936	154•64	3-962	$331 \cdot 08$		
\mathbf{M}_{3}	$0 \cdot 013$	131-54	0.011	213.39	0-0.30	254-92	0-030	1338-99	(1) 064	297-30	0-065	21.97		
M	0.007	340-71	0.007	$329 \cdot 83$	0-021	$359 \cdot 71$	0.021	\|351-81	0-097	32:07	0•098	314.96		
M	0.009	236-92	0.009	40-60	0. 046	38•27	0. 046	206 - 42	0.012	251-57	0.032	$60 \cdot 91$		
\mathbf{M}_{8}	0.003	$275 \cdot 44$	0.003	253-69	0-009	293-63	0-009	277-83	0.010	352-96	$0 \cdot 010$	338.75		
O_{1}	0.681	71.50	0•644	$43 \cdot 54$	0.691	$73 \cdot 83$	0.654	47.41	0-681	$74 \cdot 65$	0-645	48-64		
K	1-347	201-98	1-302	$40 \cdot 83$	$1 \cdot 373$	207-12	1-326	$45 \cdot 91$	$1 \cdot 441$	$206 \cdot 71$	1-392	$45 \cdot 48$		
K_{2}	0-175	$22 \cdot 13$	0-164	$240 \cdot 22$	0-256	$100 \cdot 53$	0-239	1316.50	0-404	$139 \cdot 15$	0.377	357-09		
P_{1}	0-392	$\because 31.06$	0-392	$40 \cdot 62$	0-393	232-72	0.393	$42 \cdot 34$	0.394	$231 \cdot 86$	$0 \cdot 394$	41-49		
J_{1}	0.081	$169 \cdot 02$	0.0in	$79 \cdot 63$	$0 \cdot 074$	$170 \cdot 02$	0.069	$79 \cdot 77$	0.059	$171 \cdot 52$	$0 \cdot 084$	$81 \cdot 35$		
Q	0.145	$137 \cdot 63$	0-138	$41 \cdot 59$	0-140	$139 \cdot 56$	0.132	$45 \cdot 86$	$0 \cdot 140$	$142 \cdot 96$	0-132	$49 \cdot 89$		
L_{2}	$0 \cdot 050$	164.01	0.066	241-18	0.076	$227 \cdot 05$	0•100	$304 \cdot 91$	0-103	$220 \cdot 99$	$0 \cdot 136$	$299 \cdot 03$		
N_{2}	$0 \cdot 411$	$126 \cdot 85$	0.414	233 - 33	0-609	$168 \cdot 11$	0.613	$276 \cdot 88$	0.934	206.61	0.940	$315 \cdot 99$		
ν_{2}	0.139	$207 \cdot 48$	0.140	262-58	0-180	251-95	0.181	309 - 23	0-249	$291 \cdot 24$	0.251	$349 \cdot 09$		
μ_{3}	0.067	218 54	$0 \cdot 068$	207•66	0.045	$291 \cdot 47$	$0 \cdot 045$	$283 \cdot 57$	0-196	$320 \cdot 71$	0-199	$313 \cdot 61$		
T	0.036	28.99	$0 \cdot 036$	$30 \cdot 07$	0. 046	$36 \cdot 34$	$0 \cdot 046$	$37 \cdot 47$	0.097	70.70	0.097	$71 \cdot 85$		
$(\mathrm{MS})_{4}$	0.013	$353 \cdot 71$	$0 \cdot 013$	$168 \cdot 28$	0.027	$135 \cdot 62$	0.028	$311 \cdot 67$	0-076	$211 \cdot 86$	$0 \cdot 077$	$28 \cdot 30$		
$(2 S M)_{2}$	0-014	$309 \cdot 86$	0.014	$135 \cdot 30$	$0 \cdot 014$	252.72	$0 \cdot 014$	$76 \cdot 67$	0-029	$276 \cdot 61$	0.029	$100 \cdot 16$		
	0-070	162-66	0.071	$201 \cdot 07$	0.076	$205 \cdot 91$	0.079	$247 \cdot 40$	0-135	$235 \cdot 19$	$0 \cdot 136$	$277 \cdot 50$		
$\left(\mathrm{M}_{2} \mathrm{~N}\right)_{4}$	0.012	$335 \cdot 47$	0.012	$256 \cdot 52$	0.028	66-24.	$0 \cdot 028$	$351 \cdot 05$	0-011	$326 \cdot 00$	$0 \cdot 011$	$2.51 \cdot 83$		
$\left.\mathrm{M}_{2} \mathrm{~K}_{1}\right)_{3}$	0.018	78.88	$0 \cdot 018$	92.29	0.042	$67 \cdot 53$	0.0.11	82.37	$0 \cdot 073$	154.55	0-071	$169 \cdot 77$		
$\left(2 \mathrm{M}_{2} \mathrm{~K}_{1}\right)_{2}$	$0 \cdot 019$	$178 \cdot 46$	$0 \cdot 019$	$328 \cdot 73$	0.026	$231 \cdot 41$	0-026	24.72	0.072	$275 \cdot 51$	$0 \cdot 070$	69.63		
Long Period		\bigcirc		-		-		-		-		-		
Mm	0.036	$300 \cdot 10$	0.037	14.48	$0 \cdot 074$	$303 \cdot 52$	$0 \cdot 076$	$10 \cdot 80$	0•101	$280 \cdot 79$	$0 \cdot 104$	$347 \cdot 86$		
Mf	$0 \cdot 069$	$341 \cdot 95$	$0 \cdot 061$	$3: 24$	$0 \cdot 061$	$326 \cdot 30$	$0 \cdot 05.4$	$15 \cdot 18$	0.059	317.94	$0 \cdot 053$	6. 39		
MSf	$0 \cdot 013$	190.08	0.013	21-52	0-024	$126 \cdot 13$	0.02.t	310.08	$0 \cdot 031$	36.59	0.031	$220 \cdot 14$		
Sa	0-383	$70 \cdot 95$	$0 \cdot 353$	351-39	0-074	$100 \cdot 57$	$0 \cdot 074$	$20 \cdot 95$	0-139	$7 \cdot 09$	0•139	$287 \cdot 4.5$		
Ssa	0-09s	315.95	0-098	156.83	$0 \cdot 113$	$319 \cdot 90$	$0 \cdot 113$	$160 \cdot 67$	0-090	$33 \cdot 76$	$0 \cdot 090$	$234 \cdot 49$		

1917

1917

	RANGOON				MOULMEIN				PORT BLAIR			
	$\mathrm{A}_{0}=10 \cdot 303 \mathrm{feet}$				$\mathrm{A}_{6}=8 \cdot 426$ feet				$\mathrm{A}_{0}=4.836 \mathrm{feet}$			
	R	\checkmark	11	*	R	\checkmark	H	*	R	\checkmark	H	\star
Short												
Period		\bigcirc		\bigcirc		-		\bigcirc		\bigcirc		-
S_{1}	0•124	$127 \cdot 23$	$0 \cdot 124$	127-23	0.113	$137 \cdot 30$	0-113	$137 \cdot 30$	0-034	$69 \cdot 44$	$0 \cdot 034$	69-44
S_{2}	2.185	167.99	2.185	167-99	$1 \cdot 555$	14.4 .32	$1 \cdot 555$	144.32	0.963	$312 \cdot 96$	$0 \cdot 963$	$312 \cdot 96$
S_{+}	0-081	261-22	0-081	261-22	0-082	$218 \cdot 20$	$0 \cdot 082$	$218 \cdot 20$	0.006	$289 \cdot 09$	0•006	$289 \cdot 09$
S_{8}	0.010	$40 \cdot 03$	0.010	$40 \cdot 03$	0.010	193.31	$0 \cdot 010$	$193 \cdot 31$	0-004	$266 \cdot 91$	$0 \cdot 004$	91
S_{8}	0.002	291. 25	0.002	$291 \cdot 25$	0-005	181-22	0.005	$181 \cdot 22$	0. 005	$45 \cdot 88$	0-005	$45 \cdot 88$
M_{1}	$0 \cdot 035$	99-92	0.018	267-35	0.008	99-83	0.004	$267 \cdot 31$	0.017	68-20	0.009	235-52
M_{2}	$5 \cdot 812$	$312 \cdot 28$	5-851	130.30	4-201	291-41	+1-224	$109 \cdot 53$	1-978	$101 \cdot 05$	$1 \cdot 992$	278.84
\mathbf{M}_{3}	$0 \cdot 016$	$49 \cdot 64$	$0 \cdot 016$	$136 \cdot 67$	0.023	$55 \cdot 40$	0.024	$142 \cdot 59$	0-006	292.69	0-006	$19 \cdot 39$
M_{4}	0.471	170-94	$0 \cdot 477$	$166 \cdot 99$	$0 \cdot 951$	$164 \cdot 01$	0.964	$160 \cdot 26$	0.011	$123 \cdot 39$	0.011	118.98
M_{6}	$0 \cdot 260$	$276 \cdot 15$	0.265	90-23	0.065	$348 \cdot 07$	0.066	162.44	0.003	$241 \cdot 19$	$0 \cdot 003$	54. 57
M_{8}^{6}	0.083	$119 \cdot 49$	0.085	$111 \cdot 59$	0-057	$104 \cdot 24$	0.058	$96 \cdot 74$	0-001	$116 \cdot 57$	0.001	107.74
O_{1}	0. 323	$46 \cdot 85$	0•305	22.49	0-269	65-62	0.255	$41 \cdot 36$	0-169	326-01	0.160	$301 \cdot 41$
K_{1}	$0 \cdot 713$	$196 \cdot 31$	0•688	$35 \cdot 02$	0-4.74	$199 \cdot 27$	0.457	$37 \cdot 98$	0-405	$126 \cdot 85$	$0 \cdot 391$	325-57
\mathbf{K}_{2}	0.611	310-81	0.570	$168 \cdot 62$	0-398	286.53	0.371	$144 \cdot 33$	0-260	$90 \cdot 13$	0.243	307-96
P_{1}	- 169	$248 \cdot 72$	$0 \cdot 169$	$58 \cdot 12$	0-135	$247 \cdot 35$	$0 \cdot 135$	57-05	0•133	$153 \cdot 78$	0-133	$323 \cdot 47$
J_{1}	0.037	$160 \cdot 98$	$0 \cdot 035$	69-59	0•020	$176 \cdot 78$	0.018	$85 \cdot 31$	0-017	$49 \cdot 33$	$0 \cdot 016$	318.07
Q	0.032	$107 \cdot 46$	0.030	16.88	0.038	$136 \cdot 18$	$0 \cdot 036$	$45 \cdot 75$	0.024	328-35	0.023	$237 \cdot 40$
L_{2}	0.398	98-23	0.5:25	$177 \cdot 00$	O-300	84.05	$0 \cdot 396$	162.87	0.069	222.02	$0 \cdot 091$	$300 \cdot 69$
N_{2}	1.039	$2 \cdot 11$	$1 \cdot 046$	$113 \cdot 92$	0.712	$341 \cdot 23$	$0 \cdot 717$	93-19	0-388	160•81	$0 \cdot 390$	272•26
ν_{2}	0.399	$75 \cdot 43$	0-401	$135 \cdot 60$	0-262	70.84	0.263	$131 \cdot 15$	0-109	$238 \cdot 81$	$0 \cdot 110$	298.67
μ_{2}	0.566	$291 \cdot 12$	$0 \cdot 573$	$287 \cdot 17$	0-428	$273 \cdot 17$	$0 \cdot 434$	$269 \cdot 42$	0.078	$319 \cdot 25$	$0 \cdot 079$	$314 \cdot 84$
	0.086	$210 \cdot 45$	$0 \cdot 1086$	$211 \cdot 66$	0-082	$176 \cdot 89$	0.082	178.11	0.04.4	1.05	0.044	2.26
$\left(\mathrm{MS}^{2}\right)_{4}$	0.416	29.72	$0 \cdot 419$	$207 \cdot 74$	$0 \cdot 770$	$22 \cdot 35$	$0 \cdot 776$	$200 \cdot 47$	0-021	-13.56	0.021	$221 \cdot 36$
(2SM),	0.159	$225 \cdot 72$	0-160	+7.70	$0 \cdot 1+3$	$220 \cdot 65$	$0 \cdot 14.1$	$42 \cdot 53$	$0 \cdot 119$	$332 \cdot 21$	$0 \cdot 019$	$154 \cdot 42$
$2 \mathrm{~N}_{2}$	0.176	$150 \cdot 03$	$0 \cdot 177$	195.61	0-114	$110 \cdot 04$	$0 \cdot 115$	155-83	0-067	221-18	$0 \cdot 067$	266.28
$\left(\mathrm{M}_{2} \mathrm{~N}\right)_{4}$	0.160	$221 \cdot 24$	$0 \cdot 162$	151.07	0-321	$213 \cdot 73$	0-325	143.81	0.004	$89 \cdot 36$	0.004	18.61
$\left(\mathrm{M}_{2} \mathrm{~K}_{1}\right)_{3}$	0-137	$33 \cdot 36$	$0 \cdot 134$	$50 \cdot 10$	$0 \cdot 153$	$52 \cdot 45$	0-149	69-28	0.017	$100 \cdot 43$	$0 \cdot 017$	$116 \cdot 94$
$\left(2 \mathrm{M}_{2} \mathrm{~K}_{1}\right)_{3}$	$0 \cdot 111$	$250 \cdot 48$	0-109	47-82	0.111	$256 \cdot 46$	$0 \cdot 112$	$54 \cdot 01$	0.007	$36 \cdot 21$	$0 \cdot 007$	193.08
Itong Period		\bigcirc		\bigcirc		-		\bigcirc		\bigcirc		
Mm	0-132	$328 \cdot 96$	0.135	$35 \cdot 1 \times$	0.338	$315 \cdot 15$	0-347	$24 \cdot 32$	$0 \cdot 0 \pm 2$	$320 \cdot 29$	$0 \cdot 043$	$26 \cdot 64$
M	0.201	$3.50 \cdot 20$	0-182	$36 \cdot 95$	$0 \cdot 373$	$356 \cdot 28$	0.332	42.92	0-045	310.3.3	$0 \cdot 040$	357-33
MSf	0-522	220.65	$0 \cdot 526$	$42 \cdot 6 ;$	1-230	$222 \cdot 23$	1-239	44•11	0.013	3.92	$0 \cdot 013$	$192 \cdot 13$
Sa	1-206	$241 \cdot 02$	$1 \cdot 206$	$161 \cdot 32$	$2 \cdot 359$	$234 \cdot 86$	$2 \cdot 359$	$155 \cdot 15$	0.218	$260 \cdot 14$	0.218	$180 \cdot 46$
Ssa	0-185	$163 \cdot 30$	$0 \cdot 185$	3.90	$0 \cdot 671$	$109 \cdot 46$	0.671	$310 \cdot 06$	0.149	$276 \cdot 73$	0-149	$117 \cdot 35$

Data forwalded to England.

The following data were prepared and supplied to the Director, National Physical Laboratory, Teddington, England during the year under report:-
(a) Values of the tidal constants for 40 ports for the tide-tables for 1921, ready for use for the tide-predicting machine.
(b) Values of the tidal constants for the tide-tables for Basrah for the year 1919.
(c) Actual values of high and low water during 1916 at 12 stations. These include nine stations at which regular tidal observations by self-registering tide-gauges were carried out and three stations at which high and low water readings were taken during day-light on tide-poles.
(d) Comparisons of the above with predicted values for 1916, the errors being tabulated in such form as to be of use in improving the predictions, if possible.

Ernors in Predictions.

The predicted times and heights for ligh and low water for the year 1917, as given in the tide-tables, have been compared against the actual values obtained from tidal observations at the nine stations now working and at three other stations where tidal registrations by selfregistering tide-gauges have ceased but where the times and heights of high and low water are read on the tide-poles.

The errors of the predictions thus determined are tabulated in the five tables herewith appended.

No. 1.
Percentages and amounts of the errors in the predicted times of high water
at the various tidal stations for the year 1917.

Stitions.	Autometic or tide. pole observations.	Number of comperisons betweon netual and predicted values.	Errors of 5 minutes and under.	Errore over 5 minutes and under 16 minutes.	Errort over 15 minates and under 20 minutes.	Errora over 20 minutes and under 30 minutes.	Errora over 96 minutes.
			Percent	Per cent	Per ceut	Per cent	Por cent
Aden ...	Auto.	645	20	25	9	16	30
Karāchi ...	"	(:99	40	13	7	7	3
Bhaunagar ...	T. P.	365	86	34	0	0	0
$\text { Hombry }\{\text { (Apollo Bandar) }$	Auto.	704	98	44	8	7	3
(Prince's Jock)	"	651	43	89	8	7	3
Mndran	"	704	40	40	6	8	6
Kidderpore ...	"	705	26	43	13	12	6
Chittagong ...	T. P.	365	33	39	8	10	10
Alyab -..	"	365	100	0	0	0	0
Rangoon ...	Anto.	705	49	38	7	1	2
Moulmein	"	705	36	43	10	9	2
Port Blair ...	"	706	33	47	10	8	2

NO. 2.
Percentages and amounts of the errors in the predicted times of low water at the various tidal stations for the year 1917.

Stations.	$\begin{gathered} \text { Antomatic } \\ \text { or } \\ \text { tilepole } \\ \text { observations. } \end{gathered}$	Number of c-mparisons bet.ween actual and predicted values.	Errors of 5 minutes and under.	Errors over 5 minutes und under 15 minutes.	Errors over 15 minutes nad under 20 misutes	Errors over 20 minutes and under 30 minutes.	Errors over 30 minutes.
			Per cent				
Aden ...	Auto.	652	20	22	11	18	29
Karächi ...	"	704	32	39	12	12	5
Bhaunagar ...	T.P.	365	67	33	0	0	0
Bowbay $\left\{\begin{array}{l}\text { (Apollo Bandar) }\end{array}\right.$	Auto.	705	40	45	5	7	3
${ }^{\text {Bombay }}$ \{ (Prince's Dock)	"	551	36	44	8	8	4
Madras ...	"	705	41	40	7	7	5
Kidderpore ...	"	705	30	4.2	12	12	4
Chitlagong ...	T.P.	365	24	42	13	12	9
Akyab ...	"	365	99	1	0	0	0
Rangoon ...	Auto.	705	31	37	14	15	3
Moulmein ...	"	699	23	34	13	16	14
Port Blair ...	"	703	23	49	16	10	2

No. 3.
Percentages and amounts of the errors in the predicted heights of high water
at the varions tidal stations for the year 1917.

Stations.	Automatic or tide-pole observations.	Namber of comparisons between nctual and predicted values.	Mean minge nt aprings iu feet	Errors of 4 inches and under	Errors over 4 inches and under B inches	Errors over 8 inches and under 12 inches	Errors over 12 inches
				Per cent	P'er cent	Per cent	Per conl
Aden ...	Auto.	645	$6 \cdot 7$	92	7	1	0
Karāchi ...	"	699	$9 \cdot 3$	60	32	7	1
Bbaanagar ...	'Г.P.	365	$31 \cdot 4$	59	36	5	0
$\text { Bombay }\{(\text { Apollo Badar })\}$	Auto.	704	$13 \cdot 9$	75	22	2	1
(Prince's Dock)	"	5 E 1	$13 \cdot 9$	63	29	8	0
Madras	"	704	$3 \cdot 6$	79	19	2	0
Kidderpore ...	1	705	$11 \cdot 7$	40	22	18	20
Chitiagong ...	T. \mathbf{P}.	365	$13 \cdot 3$	35	26	18	21
Akgab $\quad .$.	"	365	8.3	74	21	5	0
Rangoon ...	Auto.	705	16.4	53	30	12	5
Moalimein $\quad .$.	"	705	12.7	34	28	20	18
Port Blair \quad..	"	706	6.6	89	11	0	0

No. 4.
Percentages and amounts of the errors in the predicted heights of low water at the various tidal stations for the year 1917.

Stations.	$\left\|\begin{array}{c} \text { Automatie } \\ \text { or } \\ \text { tide.pole } \\ \text { observations. } \end{array}\right\|$	Namber of compertsons between actual and predioted values.	Mean range at eprings in feet.	$\begin{aligned} & \text { Errors of } \\ & \text { 4inches } \\ & \text { and under. } \end{aligned}$	Efrora over 4 inchea and under 8 inches.	Errors over 8 inches and under 12 inches.	Errora over
				Per cent	Per cent	Per cent	Per cent
Aden $\quad .$.	Auto.	652	6.7	97	3	0	0
Karāohi ...	"	704	93	81	17	2	0
Bheunagar - ${ }^{\text {a }}$	T.P.	365	31.4	61	34	5	0
(Apollo Bandar)	Auto.	705	$13 \cdot 9$	71	24	4	1
Bombay $\{$ (Prince's Dock)	"	551	$13 \cdot \theta$	64	30	5	1
Madras \quad..	"	705	3.5	82	17	1	0
Kidderpore ...	'	705	$11 \cdot 7$	43	24	17	16
Chittagon! ...	T.P.	365	$13 \cdot 3$	37	22	13	28
Akyab $\quad .$.	"	365	8.3	68	24	7	1
Rangoon ..	Auto.	705	16.4	38	31	16	15
Moulmein ...	"	699	$12 \cdot 7$	32	25	17	26
Port Blair ...	*	703	$6 \cdot 6$	92	8	0	0

No. 6.
Table of averaye errors in the predicted times and heights of high and low water at the several tidnl statious for the y-ar 1917.

Number of stations.	Predictions tested by	Percentage of Predictions, at hiog and low watee mithin					
		15 minutes of actunis.		8 inches of actuals		one-tenth of mean range	
		High	Low	High	Low	High	Low
6 Open oonst	S.R. Tide-gauge	75		96	98	96	97
2 ",	Tide-pole	100	100	95	94	100	99
3 Riverain	S.R. Tide-gauge	78	65	69	64	92	88
1 "	Tide-pole	72	66	61	69	88	84

Comparisons of the Pledictions for the year 1917 with those for the previous year.

The predictions of times and heights of high and low water for the jear 1917 at the nine working stations were compared against the predictions for the previous year and were found to be practically of the same degree of accuracy, except at Aden and Port Blair where the predictions of times were slightly less accurate than those for the year 1916.

The greatest difference between the actual and predicted heights of low water for 1917 at the riverain ports was as follows:-

Kidderpore ... 4 feet 4 inches on 9 th October 1917, actuals being higher.
Rangoon \quad.. 2 feet 3 inches on 6th July 1917, actuals being lower.
Moulmeiu ... 3 feet 6 inches on 7 th July 1917, actuals being lower.

Tide-Tables.

The tide-tables for the year 1919 have not yet been received from England.
The tide-tables for Basrah for the year 1919 are being printed at the office of the Trigonometrical Survey at Dehra Dūn and will be despatched to the Director Inland Water Transport Basrab in October 1917.

The amount realized on the sale of tide-tables during the year ending September 1917 is Rs. $1747 / 7 / 6$.

Programme for season 1918-19.
Tidal observations during the coming year will be continued at the 9 observatories now working.

No. 17 PARTY (LEVELLING).

By H. G. Shaf.

Pebsonnal.

Provincial Officers.
Mr. H. G. Shaw, in charge. Retired : in temporary employ from 21st Febraary 1918.
, D. H. Lura, up to 15th September 1918.
, J. Mc Craken, from 15th Angast 1918 to 15th September 1918.
" N. N. Chuckerbatty, L. C. E., up to 171h October 1917 and again from 15th Augnst 1918 to 15th September 1918.

Upper Subordinate Service.
Mr. Satish Cbandra Makerjee, up to 15th September 1918.

Lower Subordinate Service
3 Compaters.
5 Recorders.
2 Clerk.

Two detachments were employed in levelling operations during the past field season. The outturn, including branch lines, amounted to 152 miles of "fore and back double levelling of precision" and 285 miles of single revisionary levelling of precision, in the United Provinces, Bengal, and Bihār and Orissa, in the course of which the heights of 1 principal station of triangulation, 15 primary and 586 secondary bench-marks were determined, including 11 primary and 411 secondary old benchmarks which were reconnected during the revisionary and check levelling. Full details of the out-turn of work are given in table I. appended.

The health of the detachments was on the whole good. Only a ferw men occasionally suffered from malaria.

Levelling operations.-The programme of work consisted of-
(a) Levelling from Cawnpore to Jhānsi along the main road via Kālpi.
(b) Revising lines of levels
(i) from Karamnảsá to Aurangābād.
(ii) from Barākar to Burdwān.
(iii) from Rānchì to Barālar.

Two detachments, called Nos. 1 and 2 Detachments, carried out the programme described below; each detachment consisted of one levelling officer, 2 recorders and 19 menials.

Mr. S. C. Mukerjee was in charge of No. 1 and Mr. D. H. Luxa of No. 2 Detachment.
No. 1 Detachment revised the line from Rānchī to Barākar, and a part of the Barākar-Burdwān line between Barākar and Rājbāndh.

No. 2 Detachment revised the line from Karamnāsā to Aurangābād, and a part of the Barākar-Burdwān line between Burdwàn and Rājbāndh.

Then both the detachments, working in opposite directions, levelled the CawnporeJhãnsi line, via Kälpī along the main road, crossing the Jumoa by the G.I.P. Railway bridge en route. This is a new line and is useful for both geodetic and irrigation purposes.

One of the objects of running this new line of levels was to test the height of the standard bench-mark at Jhannsi which was based on that of Colonel Sanders' monument, $\frac{\mathrm{BM} .6}{64 \mathrm{~F}}$, when the connection was made in 1905-07.

When the line Agra-Gwalior was revised in 1915-16 the height of this B.M. was found to differ by -1.700 feet from that determined by the old levelling of 1861-62. It was assumed then that the difference was due to the point of reference in 1905-06 and 1915-16 not being the same as that used in 1861-62. The line Cawnpore-Jhansi now definitely proves that this assumption was correct. This line breaks up the large circuit Allahābäd-Cawnpore-Agra-Gwalior-Sironj-Katni-Allahābād, into two smaller ones, viz.- (1) Cawnpore-Agra-Gwalior-Jhānsi-Cawnpore, and (2) Cawnpore-Jhänsi-Gwalior-Sironj-Katni-Allahābād-Cawnpore, which close with errors of -0.724 , and +0.731 of a foot respectively, as shown below:

Circuit (1).

Lines.		Distance in miles.	Unadjusted dynamic difference of beight in feet.	Yrab.
From	To			
Block-stone B.M. at Cawnpore.	Block-stone B.M. at Agra.	$189 \cdot 9$	+143.321	$\left\{\begin{array}{l}1864-65 \\ 1861-62\end{array}\right.$
Block-stone B.M. at Agra.	Pedestal of Lt.-Col. Sanders' monument.	$52 \cdot 3$	$+28.472$	1915-16
Pedestal of Lt.-Col. Sanders' monument.	Standard B.M. at Jhāusi.	$83 \cdot 7$	$+269 \cdot 237$	1905-06-07
Standard B.M. at Jhänsi.	Block-stone B. M. at Cawnpore.	$141 \cdot 3$	-441.754	1917-18
	Total	467-2	- 0.724	
Circuit (2).				
Block-stone B.M. at Cawnpore. Standard B.M. at Jhānsi.	Standard B.M. at Jhānsi.	$141 \cdot 3$	+ 4441.754	1917-18
	Pedestal of Lt.-Col. Sanders' monument.	$83 \cdot 7$	- $269 \cdot 237$	1905-06-07
Pedestal of Lt.-Col. Sanders' monument.	Lower mark-stone Sironj Base-line N.E. end.	$202 \cdot 3$	+899.796	1861-62
Lower mark-stone Sironj Bose-line N.E. end.	$\begin{array}{cl} \text { G.T.S. } & \text { Katni Ry. } \\ \text { B.M. } & \text { Station. } \end{array}$	$193 \cdot 0$	- 224.590	1898-99
$\begin{array}{cl} \text { G.T.S. } & \text { Katni Ry. } \\ \text { B.M. } & \text { Station. } \\ \text { G.T.S. } & \text { at Allahābād } \\ \text { B.M. } & \text { Fort. } \end{array}$	G.T.S. at Allahābād B. Fort.	$161 \cdot 5$	$-956 \cdot 019$	1898-99
	Block-stone B.M. at Cawnoore.	$129 \cdot 0$	+ $109 \cdot 033$	1864-65
	Total ...	$910 \cdot 8$	+ 0.731	

The line Campore-Jhānsi was levelled on the new system of "fore and back double levelling". The practice adopted in previous years was that the two levellers working from opposite directions of a line of levels, took only one set of observations at each station and exchanged data on meeting each other. Then, as the work advanced over the line already levelled in the reverse direction, if either found that the results of bis levelling between a pair of bench-marks did not agree, within the prescribed limits, with those obtained by the other leveller, be relevelled tbat section of the line both in the forward and backward direction. .

This procedure is open to the following objections:-
(a) Each leveller was inclined to increase his daily rate of progress in order, if possible, to finish more than half the line before meeting the other leveller, so that his liability to irksome repetitions might be reduced. This tended to a sacrifice of accuracy to speed.
(b) It resulted in a high percentage of relevelments and occasionally it was found that the results obtained by the first leveller had to be rejected on relevelment by the second leveller. In levelling of high precision this should very seldom occur.

To remedy the abore, the following procedure was adopted on the Cawnpore-Jhänsi line:-
(i) The system of the levellers exchanging data on meeting each other was discontinued; they were made to send, from time to time as the work progressed, all the data to the head-quarters office of the party, and each gave the other only the descriptions of bench-marks

for identification. The head-quarters office after comparing the results of the two levellers issued to them instructions as to relevelments required.
(ii) Two sets of observations were taken every time the instrument was set up. After the first set of readings the instrument was dislevelled and raised or lowered by moving the legs of the stand so that on relevelment different graduations on the staves were intersected. A second set of readinge was then taken in the reverse order to the readings of the first set. In the event of the means of the two sets of readings differing from each other by more than 0.004 of a foot, a third set was taken, and when the third set did not differ by more than 0.001 of a foot from the mean of the first and second sets, the mean of all the three results was retained, otherwise the discordant set was rejected. This will be made clear by the following examples :-

ft.

0.280 result of lst set
$0 \cdot 285$ result of 2 nd set $\}$ The mean of all the three was kept.
$0 \cdot 28 \mathrm{z}$ result of 3 rd set
ft.

0.057 result of 2nd set	1st set rejected and the mean of 2nd and 3rd kept.
0.057 result of 3 rd set ft.	
5-208 result of lst set	
$5 \cdot 215$ result of 2nd set	2nd set rejected and the mean of 1st and 3rd kept.
$5 \cdot 209$ result of 3rd set	

The probable systematic errors of the line are given below from which it will be seen that the probable accidental error is slightly in excess while the probable systematic error is well within the prescribed limits.

Lines	$\begin{aligned} & \text { Lenth } \\ & \text { in } \\ & \text { iniles } \end{aligned}$	Probable accidental error	Probuble systematic error	Year
		$\begin{aligned} & \text { Fl., per mile } \\ & \pm 0 \cdot 00416^{*} \end{aligned}$	$\begin{aligned} & \text { Ft. per mile } \\ & \pm 0 \cdot 00106^{*} \end{aligned}$	
Cawnpore to Jhānsi	143.0	$\pm 0 \cdot 00485$	$\pm 0 \cdot 00031$	1917-18

The revisionary levelling was undertaken to clear up the large discrepancy of $-1 \cdot 899$ feet between the old and new values of the height of the standard bench-mark at Benares based on that of the inscribed bench-mark ($\frac{\text { HM } 264}{79 \mathrm{~B}}$) at Howrah, Botanical Gardens, which was disclosed by last year's levelling operations; and to investigate the large closing error of -0.989 of a foot, in the circuit Rānchī-Baräkar-Barhī-Ränchī which was completed last year (vide diagram attached).

The values obtained by single revisionary levelling of the lines Karamnāsā-Aurangābād and Barakar-Burdwan show that the previons results got by clonble levelling are perfectly reliable, the unadjusted orthometric discrepancies of $-0.13 t$ and -0.216 of a foot respectdvely being mostly due to the accumulation of levelling error generated during the single revisionary levelling operations.

The question therefore still remains as before why there is a large discrepancy of -1.899 feet between the old and new values of the difference in height between the Benares standard bench-mark and the inseribed bench-mark at Howrah, Botanical Gardens, ($\frac{\mathrm{HM} 2644}{7 \mathrm{man}_{13}}$). An inspection of the table given below shows that a very large portion of this error, i.e., $-\mathrm{l} \cdot \mathrm{Gl} 9$ feet is in the portion between Barhani T.S. and Niāl T.S. All the component parts of this part of the Benares-Howrah line are practically above suspicion for the following reasons:-

The portions Karamnāsā-Aurangābād and Barākar-Burdwān have been revised and found correct as stated above. The portion Aurangabād-Barhi enters into circuit A (vide diagram attached) which closes very well, i.e., with an error of -0.089 of a foot. The portion Burdwān-Niāl T.S. is practically errorless, the difference between the old and new

[^1]levelling being only -0.026 of a foot. The only portion left is from Barhi to Barảkar. It enters into circuit B which on being revised closes with an error of -0.561 of a foot. Had this circuit error been on the portion Barhi-Baràkar, it would have increased by its amount the error under discussion of $-1 \cdot 621$ feet and made it $-2 \cdot 18: 2$ feet.

The only conclusion, therefore, to be drawn is that the discrepancy in question is almost certainly unreal, the closing error being probably due to errors in the old work, which includes the two terminal bench-marks. For present purposes therefore and until the new net of modern levelling can be treated as a whole the amount of error to be assigned to each line in order to remove the circuit error mentioned above and the discrepancy between the old and new results, has be n determined by the method of minimum squares; and along each line the assigned portion of error has been dispersed by applying to the height of each bench-mark a correction proportional to its distance from the starting point.

TABLE.

Lines.		Difference of published ortho. metrio heights in foet. (Old lerelling via Dildāruanar und Pirpanti).	Yeur	Omadjusted orlhometric difference of heights in feet. (New levelling via Haräkar und Burdwān).	Year	$\begin{aligned} & \text { Jiserepuncy } \\ & \text { in } \\ & \text { feet. } \end{aligned}$
Benares S. B. M. to Barhāui T.S. Barhāni T.S. to Niāl T.S. Niāl 'I.S. to Howrah, Botanical Gardens, $\left(\frac{H M}{7:} \frac{264}{B}\right)$	35	+17.631	$\left\{\begin{array}{l}1863-65 \\ 1869-70\end{array}\right.$	$+17.533$	$191+-15$	-0.101
	362	-236.080	$\left\{\begin{array}{l}1869-70 \\ 1862-63\end{array}\right.$	$-237 \cdot 702$	$\left\{\begin{array}{l}1909-10 \\ 1914-15 \\ 1916-17\end{array}\right.$	-i 619
	56	$-22 \cdot 197$	$\left\{\begin{array}{l} 1862-63 \\ (181-83 \end{array}\right.$	- 22.376	$\left\{\begin{array}{l}1909-10 \\ 1913-1 t \\ 1916-17\end{array}\right.$	-0.179
					Total	-1899

As regards the large closing error of -0.949 of a foot in circuit B, out of the three lines forming this cirenit (vide diagram attached) the line Barhi-Ranchī enters in circuit A and is above suspicion as circuit A closes very well. The line Barhī-Barākar is also beyond doubt for the reasons given above. The line Rannchī-Barakar however is in hilly undulating country and the results of the revisionary levelling on this line do not accord with those obtained last year, the differences being most probably due to the accumulation of personal observational errors on account of refraction and radiation. By using the mean of the three values, two obtained last year, and one during the year under report, the circuit error is reduced from

General Notes.

The usual weekly comparison of the staves against 10 -foot standard stecl tapes Nos. 2 and ${ }^{5}$ were made with the object of determining the changes in the lengths of the staves A table showing the results of the staff comparisons is appended, see table V. The lencths of the steel tapes were carefully determined on the new comparator at Dehra Dun by comparisons against the 10 -foot Standard Bar A before and after the field season and were found as shown below :-

Results of compurisons a! Iainst 10-fint Standard Bar A.

Date of comparison.	1.ength ut $6 \%^{\circ} \mathrm{F}$.			
	Tape No. 2.		Tupe No. 6.	
	Edıe A	Edge B	Edse A.	Hige B
October 1917	$9 \cdot 9996590$	$9 \cdot 99969.37$	$9 \cdot 9990134$	9-990S169
May 1918	$9 \cdot 9996302$	9 $\cdot 0996851$	9.9998224	9-9998.108
Mean lenrths	$9 \cdot 99964+6$	9.9996894	$9 \cdot 9998679$	$9 \cdot 9998443$

TABLE I.—Tabuiar statement of out-turn of work, stason 1917-18.

$\begin{aligned} & \text { Detachment } \\ & \text { Nos. } \end{aligned}$	Lines.	Months.	Mend distance leveledid in both directions.							Number of benctemarss connected.																
			Main Line.	Extras nindbranch-lines	Total.	Relevelled.	Total number of feet : Mean of buth directions).			Primary.						secondibi.										
																				$\begin{aligned} & \dot{8} \\ & \stackrel{3}{8} \end{aligned}$		$\begin{aligned} & \text { 槀 } \\ & \text { 品 } \end{aligned}$				
			Mls.Chs. Lks.	M19.Chs.Lks.	Mhs.Chs.Lks.	Mls.Chs.Lks.	Rises.	Falle.		Old.	${ }^{\text {New. }}$	Old.	New.	Old.	New	01a.	Nem.	old.	New.	old.	New:	Old.	New.	Old.	Nem.	
2	$\begin{gathered} \text { Karamnāā } \\ \text { to } \\ \text { Aurangábā́l } \end{gathered}$	Sorember 1914 Decenber 1917	$\begin{aligned} & 5469: s \\ & 1952 \quad 12 \end{aligned}$	$\begin{aligned} & +2536 \\ & 10770 \end{aligned}$	$\begin{aligned} & 59 \quad 1544 \\ & 205982 \end{aligned}$	133 to	$305 \cdot 178$ 137 200	$\begin{aligned} & 182569 \\ & 136627 \end{aligned}$		$\left.\begin{array}{l} 578 \\ 204 \end{array}\right\}$.	\cdots	\ldots	...	9	\cdots	\cdots	\ldots	53	\cdots	2		\ldots	\cdots
		Turala	74.4210	53326	79 75 26	13340	$42 \cdot 458$	319 196	782	9		\cdots	...	53	.	2	\ldots	...		
1	RäncyīBatäbar	Nuvenber 1917 December 1917 Junnary 1918 Totals	$\begin{aligned} & 283988 \\ & 644810 \\ & 275706 \end{aligned}$... \ldots \ldots	$\begin{aligned} & 28 \quad 3988 \\ & 19+810 \\ & 275706 \end{aligned}$		$\begin{array}{r} 53 \$ 440 \\ 137+1.74 \\ 621.488 \end{array}$	$\begin{array}{r} 1538 \cdot 501 \\ 10108868 \\ 943206 \end{array}$	$\left.\begin{array}{l} 412 \\ 822 \\ 318 \end{array}\right\}$...	1	10		94	...	100	...	2	\ldots	
			12.56504		1255:5 04		2.574.002	4382 575	1552	7	\ldots	1	10	...	94	...	110	\cdots	2	..	\cdots	\ldots	
1 and 2	$\begin{gathered} \text { Part if Line } \\ \text { Burdwàn } \\ \text { tor } \\ \text { Barakar } \\ (\text { Herrivi,n }) \end{gathered}$	1)ecenber 1917 Jamany 1918	$\begin{gathered} 8 \div 5112! \\ 68 \div 8 \quad 26 \end{gathered}$	27958	$\begin{array}{r} 825 \mathrm{u} \\ 712781 \end{array}$	$\text { 6! } 173$	1746×0 $1165 \cdot 438$	$\begin{aligned} & 249 \cdot 466 \\ & -421 \cdot 725 \end{aligned}$	$\left.\begin{array}{l} 114 \\ 770 \end{array}\right\}$	\ldots		1		...	-	7	...	0	1105	...	4	...	\ldots	\cdots	
		T..1. s	765328	27958	795286	17396	$:^{1344^{\prime} \cdot 118}$	1071-191	884	\ldots	\ldots	1		...		7	...	10	...	105		4	
1 ant 2		Janlary 191s February 1918 Murch 1918 April 1918	$\begin{aligned} & 1367+3 \\ & 487659 \\ & 5960 \\ & 2030 \\ & 2039 \end{aligned}$	$\begin{gathered} \cdots \\ 34385 \\ 442 \quad 20 \\ 103 \quad 46 \end{gathered}$	136743 52 4044 6it :2 22 214314	06001	$\begin{aligned} & 219864 \\ & 543486 \\ & 59.5392 \\ & 177 \cdot 457 \end{aligned}$	$\begin{aligned} & 201 \cdot 936 \\ & 362 \cdot(36 \\ & 353 \cdot 191 \\ & 189 \cdot 664 \end{aligned}$	$\left.\begin{array}{l} 308 \\ 549 \\ 648 \\ 222 \end{array}\right\}$		4	2	\ldots	1		1	14	...	16	17	132		12	\ldots	1	
		Tulnls	${ }^{1} 1+30372$	$909: 1$	1521323	(1) 6: 010	1534; 203	${ }^{1105} 886$	1727	..:	4	2	\cdots	1	\ldots		14		${ }^{16}$		$\left.\right\|^{132}$		12		1	
			120.140	$17+25$	+37 41 39	407315	5892 781	6875 7:8	+945	7	4	4	...	1	...	27	14	${ }^{104}$	16	275	132	8	12	\ldots	1	

TABLE II.-Check-Levellina.
Discrepuncies between the old and new heights of bench-marks.

TABLE IV.
List of G. T. S. Triangulation stations connected by spirit-levelling, season 1917-18.

Nume of strition	Height ubove mean-ses-level.			Difference (Triengulution EpiritLevelling).	Remarks.
	New spiritlevelling.		Triangulation.		
	Fret	Feet	Feet	Feet	
Gora T. S. of the Rangīr Meridional Series.	$466 \cdot 980$	\cdots	$477 \cdot 000$	$+10 \cdot 020$	\bigcirc on ground floor mark-stone connected.

TABLE V.-No. 1 Levelling Detachment.
Results of comparison of staves with standard steel Tape No. 5, Season 1917-18.

Place and dute of comparison.		Staf - Tape		fiemabies,
		Stafi 23 B .	Staff 22 B .	
Chutia (Rānchī)	18-11-17	$\begin{gathered} \text { Fout } \\ +0 \cdot 00149 \end{gathered}$	$\begin{array}{r} \text { Foot } \\ +0.00158 \end{array}$	Clear and cool breeze.
Jonha	27-11-17	+0.00216	+0.00208	Do.
Sili	5-12-17	$+0.00231$	$+0.00203$	Do.
Jaipur	13-12-17	+0.00188	+0.00189	Clear and strong cool breeze.
Jhaprā	23-12-17	-0.00013	$+0.00068$	Strong cool breeze.
Barālar	29-12-17	$+0.00084$	$+0.00071$	Scattered clouds and cool breeze.
Siarsol	6-1-18	+0.00076	+0.00077	Clear and cool breeze.
Rājbāndh	12-1-18	$+0 \cdot 00064$	$+0.00030$	Clear overhead and hazy on horizon.
Raghunāthpur	19-1-18	$+0 \cdot 00106$	$+0 \cdot 00051$	Cloudy.
Barākar	26-1-18	$+0 \cdot 00068$	$+0.00015$	Clouds on horizon, strong cool breeze.
Jhānsi	8-2-18	$+0 \cdot 00062$	-0.00004	Clear and cool breeze.
Jhăusi	16-2-18	-0.00081	-0.00105	Do.
Chirgaon	24-2-18	-0.00030	-0.00021	Cloudy.
Pūnchh	5-3-18	-0.00103	-0.00079	Clear and cool breeze.
Orai	14-3-18	-0.00118	-0.00197	Light clouds and cool breeze.
Ata	23-3-18	-0.00132	-0.00233	Cloudy \& strong cool breeze.
Pukhrāyān	31-3-18	-0.001:7	-0.00215	Clear.
Nagin Jasi	9-4-18	-0.00147	-0.00237	Light clouds and cool breeze.
Carrapore	18. $4-18$	-0.00271	-0.00368	Clear.
Cawnpore	22-4-18	-0.00229	-0.00337	Do.

table V.-No. 2 Levelifing Detachment.
Results of comparison of staves with standord steel Tape No. 2,
Season 1917-18.

Place and date of comparison		Staff - Tape		Rrmaris.
		Staff 25 A	Staft 25 B	
		Foot	Foot	
Karamnās®̇	11-11-17	$+0.00337$	+0.00128	Clear and dry cool breeze.
Mohania	19-11-17	+0.00177	-0.00059	Do.
Sasarām	26-11-17	+0.00158	-0.00022	Light scattered clouds, cool breeze, dry.
Dehrí	3-12-17	+0.00141	-0.00078	Clear and cool breeze, dry.
Jasaiya (Aurangābăd)	9-12-17	$+0.00125$	-0.00084	Clear and cool breeze.
Burdwàn	30-12-17	+0.00149	-0.00029	Light scattered clouds, cool breeze, dry.
Galsi	5-1-18	$+0.00093$	-0.00172	Clear overhead, cool breeze.
Rājbāndh	12-1-18	$+0 \cdot 00067$	-0.00176	Clear and cool breeze, mornings foggy.
		Staff 24λ	Staff 24 B	
Nārainpur (Cawnpore)	21-1-18	-0.00420	-0.00279	Clear and cool breeze.
Sachendi	25-1-18	$-0 \cdot 00446$	-0.00294	Clear overhead, sudden gusts of strong cool breeze.
Hānsi Man	4-2-18	-0.00416	-0.00315	Clear and cool breeze.
Kālpi	11-2-18	-0.00512	-0.00362	Do.
Ata	19-2-18	-0.00581	-0.00441	Scattered clouds and cool breeze, few drops of rain during comparison.
Ait	26-2-18	-0.00.5.58	-0.00423	Light scattered clouds and cool breeze.
Pūnchh	5-3-18	$-0 \cdot 00620$	-0.00466	Clear and cool breeze.
Moth	12-3-18	-0.00662	-0.00459	Scattered clouds, sudden gusts of cool breeze.
Baragaon	19-3-18	$-0 \cdot 00654$	-0.00522	Light seattered clouds and cool breeze.
Tālpura (Jhānsi)	26-3-18	-0.00778	-0.00656	Clear and cool breeze.
Tälpura (Jhänsi)	2-4-18	-0.00811	-0.00662	Clear.

No. 18 PARTY (MAGNETIC SURVEY).

By E. C. J. Bond.

Personnel.
Prorincial Officers
Mr. E. C. J. Boud, iu charge.
,, R. P. Kay, B. A. up to 30th Jone 1918.
, N. R. Mazamdar.
Upper Subordinate Service.
Mr. K. K. Das, B. A., op to 31st May 1914. , B. B. Shome.

Lower Subordinate Service.
2 Magnetic Observers.
12 Computers, etc.

The present report on the work of the Magnetic party in 1917-18 comprises:-
I.-An account of the work during the field and recess seasons.
II.-A note on each of the observatories.
III.-Tables of the mean values of the magnetic elements, dates of magnetic disturbances, and hourly means and diurnal inequality of the magnetic elements at the observatories in 1917.
An index map showing the stations of the maguetic survey is appended.

I.-Work during the field and recess seasons.

1.-Work during the field season.-The magnetic observatories at Dehra Dūn and Toungoo were inspected by the officer in charge and a complete set of observations of Declination, Dip and Horizontal Force was taken at each for the comparison of instruments. The Alibāg and Kodaikānal observatories, under the Meteorological Department, were also visited for comparative observations.

Galle, a seaport in the south of Ceylon, was visited for the purpose of establishing a permanently marked repeat station. Such a station is required for determining the annual changes in the magnetic elements in the south of India and in the island of Ceylon, where no observations have been repeated since the magnetic survey of the island in 1910. The original site of the field station at Galle was not suitable for a repeat station, a new site was therefore selected near the north-eastern bastion of Galle Fort and observations of the magnetic elements were taken at a permanent traverse mark of the Ceylon Survey Department: observations will be repeated at this spot in 1919-20 and thereafter at intervals of 5 years when each of the other 74 repeat stations of the magnetic survey is revisited. The Surveyor General of Ceylon and the Superintendent of Surveys at Galle very kindly rendered every assistance to the officer in charge in the selection of a suitable site.

The staff of the party was employed in completing the reduction of the observations of the general survey to epoch and in tabulating the results for publication.
2. Work during the recess.-The computation of the comparative observations taken at the observatories and the computation and tabulation of the provisional values of Declination, Dip, Horizontal Force and Vertical Force for the three observatories (Dehra Dũn, Toungoo and Kodaikanal) for 1917 have been completed. The mean values of these elements for the year, derived from the measurements of traces of all available days, excluding those of great disturbance, are given in the table at the end of the report.

The reduction of the observations of the detailed survey to the epoch $1909 \cdot 0$ is now in hand : the observations consist of Declination, Dip and Horizontal Force taken at 407 stations distributed over eleven magnetically disturbed areas. The investigation of the results of these observations, which may perhaps disclose the existence of some special magnetic features, will be published next year.

Publication of the results of the Magnetic Survey.

The observations taken between 1901 and 1915 , at the 74 repeat stations and 1351 field stations of the general survey, have been reduced to the epoch $1909 \cdot 0$. The results will be published shortly in a separate volume of the Records of the Survey of India. The publication will contain a brief history of the magnetic survey; particulars of the work at the observatories and field stations with a reference to the instruments used and the methods
employed in the reduction of the observations; tables of the Declination, Dip, Horizontal Force, Total Force and rectangular components and the values of annual change for the first three elements at each station of observation. The volume will also contain maps showing the true course of the iso-magnetic lines as obtained from the actual observed values corrected for diurnal variation, short lived disturbances, and reduced to epoch. No attempt has been made to smooth out any irregularities in the iso-magnetic curves due to the magnetically disturbed nature of certain areas.

Programme for 1918-19.-'The three base stations (Dehra Dūn, Toungoo and Kodaikānal) will continue in operation. These observatories will be visited by the officer in charge during the field season for the comparison of instruments.

II.-The Observatomes in 1917-18.
 Dehra Dun Observatory.

1. The magnetographs have continued to work satisfactorily; the V.F. magnetograph, however, which has never worked as well as the other two self-registering instruments, had to be opened several times for cleaning the agates to give the magnet a free motion.

The rainy season bas always been a period of anxiety at this observatory but no trouble was experienced this year as no subsoil water entered the passage of the underground room, the rainfall being much below the average.
2. Mean values of the Declination and H. F. constants. —The table below gives the mean monthly values of marnetic collimation, the distribution constants P_{1-2} and P_{2-3} and the accepted values of p and q used in determining the values of the revised distribution factor. The values of in are also given, as determinel by the revised distribution factor and moment of inertia used for the computations for 1915. Vibration observations with the chronograph were used in deriving the values of m in the table.

Mean valuts of the constants of magmet No. 17 in 1917.

Montis.		Declivation constants. Mean mngnetic collimation.	h.f. Constants.					
			Distribotion Factors.				diean faldes of m.	
			$\mathbf{P}_{1.2}$	$\mathrm{P}_{2.3}$	Accepted values.		Monthly means.	Accepted m.
					P	q		
January	\cdots	$\begin{array}{r} \prime \prime \prime \\ -\quad 72 \end{array}$	$6 \cdot 11$	6.84	$\stackrel{\otimes}{\sim}$	¢	$807 \cdot 00$	00000000000
Febrtuary	...	-78	6.18	683				
Mareh	...	- 76	6.05	6.68			B06.93	
d pril	\cdots	- 711	$5 \cdot 86$	6.93			806.96	
May	\cdots	-711	5-84	6.79			806.99	
June	...	- 712	5.83	$6 \cdot 83$			$806 \cdot 97$	
July	\cdots	- 716	$6 \cdot 60$	6.46			806.94	
August	...	- 714	$6 \cdot 01$	6.51			800.98	
September	\cdots	- 713	6.09	$6 \cdot 87$			807.07	
October	...	- 716	$6 \cdot 09$	$6 \cdot 68$			807.24	
November	\cdots	- 716	6.02	6. 52			807-26	
Necember	\cdots	- 720	$5 \cdot 91$	674			$807 \cdot 16$	

3. Mean base line values.-The table below gives the mean monthly observed and accepted values of the declination and horizontal fore base lines; the accepted values have been used to compute the values of these elements for 1917. The H. F. base line values have been derived from H as determined with the revised values of the moment of inertia and distribution coefficient used in the computations for 1915.

Base line values of magnetographs in 1917.

Montre.		Declimation.			Hohizomill fobce.		
		Mean value of Base line.	Bese line accepted.	Rymamig.	$\begin{gathered} \text { Mean } \\ \text { value of } \\ \text { Base line. } \end{gathered}$	Base line accepted.	Ezixameg.
		- '	- ,		C. G. S.	C. G.N.	
January	...	128.1	$128 \cdot 1$		-32754	- 32754	
February	...	128.2	128.2		-32750	- 32750	
March	\cdots	128.5	128.5		- 32748	-32749	
April	...	128.6	128.6		-32754	-32754	
May	...	128.6	128.6		-32749	-32749	to 10h. on 30th May.
June	...	131.2	1312	to 12th Jane.	. 32727	-32727	From 31st May to 12th June.
Jaly	...	131.9	131.9	From 1lh. on 28th Junc	- 32718	-32716	From 28th Jnae to end of July.
Angust	...	$132 \cdot 3$	$132 \cdot 3$		-32715	-3:715	
September	...	1323	1323		-32708	$\left\{\begin{array}{l}\cdot 32710 \\ \cdot 32706\end{array}\right.$	op to 18th. From 19th.
October	...	$132 \cdot 8$	$132 \cdot 8$		-32703	3:703	
November	...	$132 \cdot 2$	132.2		3:700	-32700	
December	..	131.8	131.8		-32702	-32702	

4. Mean scale values and temperature range.—The mean scale values for 1917 for an ordinate of $\frac{1}{28}$ inch are:-

Horizontal Force	$4 \cdot 42$ gammas.
Declination	1.03 minutes.
Vertical Force	$4 \cdot 97$ to $6 \cdot 13$ gammas.

The mean temperature for the year was $26^{\circ} \cdot 8$ C., with maximum and minimum monthly values of $27^{\circ} \cdot 0 \mathrm{C}$. and $26^{\circ} \cdot 4 \mathrm{C}$. The temperature of reduction is $27^{\circ} \cdot 0 \mathrm{C}$.
5. Mean monthly values and annual chanyes.-The following table shows the monthly mean values of the maguetic elements for 1916 and 1917 and the annual changes for that period; these annual changes are deduced from the values of H corrected for the moment of inertia and the revised distribution factor used in the computations for 1915.

Annual changes at Dehra Dūn in 1916-17.

Months.	Horizontal Force$32000 \text { C. A. S. }+$			Declination E. $2^{\circ}+$			$\begin{gathered} \text { LIP }^{2} \\ \text { N. } 4 t^{\prime}+ \end{gathered}$			Vertical Fohce.$32000 \text { C. G. S. }+$		
	1016	1017	Annuml clinnge.	1016	1917	Annutal cbange.	1810	1917	Anunal clunge.	1916	1017	Annual change.
	γ	γ	γ	,	,	,				γ	γ	γ
Jannary	1063	11011	-5\%	13.3	$8 \cdot 3$	$-4 \cdot 9$	31!	$42 \cdot 5$	$+7 \cdot 6$	683	6.7	$+94$
Febranay	1072	1021	- $\mathbf{- 1}^{1}$	13.8	77	-51	$34 \cdot 7$	$42 \cdot 1$	$+7 \cdot 4$	589	679	$+90$
March	1052	1025	-27	127	$8 \cdot 0$	$-4 \cdot 7$	$36 \cdot 3$	$42 \cdot 1$	$+5 \cdot 8$	59:1	681	$+82$
April	1061	1024	- 37	$12 \cdot 2$	$7 \cdot 5$	-47	362	423	$+\cdots \cdot$	606	685	$+79$
May	1657	102:	-35	118	$6!$	-49	$36 \cdot 9$	+2\%	+5!	(1) 19	692	$+76$
Junc	1064	1024	-111	109		-11	370	1311	+13 11	625	699	$+7+$
July	10.3	10:20	-38	110	$1 \cdot 4$	$-1 \cdot 5$	$3 \mathrm{~S} \cdot 0$	+4.01	$+6 \cdot 0$	6.32	713	+ SI
Angust	1015	987	-61	$10 \cdot 6$	6.7	$-8 \cdot 9$	3:5	16.3	$+7 \cdot 7$	637	724	$+87$
Septomber	103s	$0!9!1$	-39	$10 \cdot 0$	$5 \cdot 7$	$-4 \cdot 3$	$39+$	$45 \cdot 6$	$+1 ; 2$	64.	723	+79
October	1034	99\%	- 11	$9 \cdot 7$	58	$-3 \cdot 9$	40 $\cdot 3$	458	$+5 \cdot 0$	658	722	$+64$
November	1028	995	-38	$9 \cdot 0$	4.7	$-4 \cdot 3$	$41 \cdot 1$	46.8	$+4 \cdot 7$	666	722	+ 56
Pecember	1098	991	-31	86	$4 \cdot 1$	$-4 \cdot 6$	413	$46 \cdot 4$	+5 1	6197	733	+ 66
Means	1050	1010	-10	$11 \cdot 0$	$6 \cdot 5$	$-4 \cdot 5$	37-9	$44 \cdot 1$	$+6 \cdot 2$	627	704	$+77$

Toungoo Observatory.

1. The magnetographs worked satisfactorily throughout the year. During the inspection of the observatory in March 1917 the Declination, Horizontal Force and Vertical Force instruments were each adjusted on account of the gradual shift of the trace due to the annual ohanges in the magnetic elements.

The Earth Inductor, No. 44, was reported by the observer to be working very unsatisfactorily and a spare Earth Inductor, No. 46, was sent from Dehra Dūn for use at Toungoo. The observatory instrument always gave good results and it is hoped that it may be possible to put it into working order again when the officer in charge visits the observatory early next year.
2. Mean ralues of the Declination and H.F. constants.-The table below gives the mean monthly values of the magnetic collimation, revised distribution constants, and moment " m " as determined with the revised distribution factor and moment of inertia used for the computations for 1915 .

Mean values of the constants of magnet No. 19A in 1917.

Montes.		declination constants.	H. F. CONSTANTS.						Remains.
		Mean magnetic collimation.	Distaibution Factors.				Mean values of mi.		
					Accep	alues.			
					\mathbf{P}	0			
		$\begin{array}{r} \prime \prime \\ -\quad 1133 \end{array}$	829			$\begin{gathered} 9 \\ 10 \\ 1 \end{gathered}$	874.29	$874 \cdot 29$	to 18 th . From 19th to end of April.
Janamry					$\stackrel{\square}{0}$				
February	\ldots	-1133	$\begin{aligned} & 5 \cdot 29 \\ & 4 \cdot 10 \end{aligned}$	8.18			$874 \cdot 22$	874.23	
March	...	-1134		$9 \cdot+4$			$\left\|\begin{array}{c} 874 \cdot 21 \\ 1873 \cdot 66 \\ 873 \cdot 67 \end{array}\right\|$	874.21	
April	...	- 1130	$8 \cdot 23$	$9 \cdot 77$				$873 \cdot 96$	
April Hay	\ldots	-1130 -1117	$8 \cdot 06$					8:3.67	
Mny	...	-1117	8.06	929					
June	...	-1124	8.10	$9 \cdot 37$) $873 \cdot 2 \%$		
Juy	\cdots	-1049	8.16	$9 \cdot 47$				$873 \cdot 22$	
Atpust	\ldots	-1058	8.19	9.28					
Seplember	...	-117	8.24	9.:4			873.09	87309	
O, cuber		-1059	$8 \cdot 14$	$9 \cdot 26$			873.02	87302	
November	...	-1117	8-18	$9 \cdot 34$			872-94	87: 96	
Jecember	...	-119	820	$9 \cdot 26$			872.92	87: 92	

3. Mean base line ralues.-The following table gives the mean monthly observed and accepted base line values of the Declination and H. F. magnetographs; the accepted values have been used to compute the values of these elements for 1917. The H. F. base line values bave been derived from H as determined with the revised values of the moment of inertia and distribution coetlicient used in the computations for 1915.

Base line ralues of magnetographs in $1!11$.

	Moxtras.	1)felimation.		homizontal force.	
		Mpan value of Base line.	Buse lino accepted.	Mean vilue of Buse line	Bnse line accepted.
January	\ldots	$\begin{array}{cc}0 & \\ 0 & 5 \\ 0 & \end{array}$	0 000	$\begin{aligned} & \text { C. (I. S. } \\ & =350.04 \end{aligned}$	$\begin{aligned} & \text { C. G.S. } \\ & 385.11 \end{aligned}$
Peloriary		$0_{0} 0$ 31-9		-35590	-35090
Mareh	\ldots	$\begin{array}{lll}0 & 51 \cdot 9\end{array}$		-38592	-38599
Aril		0 0 0 l 1	$0 \quad 51.9$	-35.581	-38.581
May	\ldots	0 31.z		-38.377	-38.37
June	\ldots	$0 \quad 51 \cdot 9$		38.572	-38572
July	- ...	0 52.4	$0 \quad 52 \cdot 4$	-38564	-38.04
August		0 2: 2	${ }^{0} \quad 52 \cdot 2$	-3856;	-38566
September		$0 \quad 52 \cdot 4$	$0 \quad 52 \cdot 4$	-35.602	-3856id
Oetober		$0 \quad 5 \% \cdot 4$	$\begin{array}{ll}0 & 5 \\ 0 & 4\end{array}$	-38501	- 38501
November		$\begin{array}{ll}0 & 52 \cdot 3\end{array}$	$\begin{array}{lll}0 & 52 \cdot 3\end{array}$	-38560	-38.510
lecember	..	0 0 2×3	0 02.3	38562	-38562

4. Mean scale values and temperature range.-The mean scale values for 1917 for an ordinate of $1 / 25$ inch are :-

Horizontal Force 5.41 gammas.
Declination 1.04 minutes.
Vertical Force $\left\{\begin{array}{l}5 \cdot 62 \text { gammas up to May. } \\ 5.81 \text { gammas fre }\end{array}\right.$
The mean temperature for the year was $89^{\circ} \cdot 2 \mathrm{~F}$., with maximum and minimum monthly values of $89^{\circ} \cdot 6$ and $88^{\circ} \cdot 9 \mathrm{~F}$. The temperature of reduction is $89^{\circ} \cdot 0 \mathrm{~F}$.
5. Mean monthly values and annual changes.-The table below gives the mean monthly values of the magnetic elements for 1916 and 1917 and the annual changes for that period: the values of annual change are deduced from the values of H as corrected for changes in the moment of inertia and the revised distribution factor used in the computations for 1915.

Annual chatiges at Toungoo in 1916-17.

Months.		LIomizontal، Fonce$\text { . } 39000 \text { C. G.S. }+$			Declination$w . O^{3}+$			Dir N. 23°			Vertical Fonce$\cdot 1600 \text { C. G. S. }+$		
		1916.	1917.	Annual cbange.	10 Lb .	1917.	Anuial change.	1016.	1917.	Annual clange.	1916.	1917.	Annual change.
January		${ }^{7}$	$\stackrel{7}{26}$	$\begin{array}{r} \gamma \\ +13 \end{array}$	6-3	11.1	- 4.8	$7 \cdot 3$	$9 \cdot 0$	$+1 \cdot 7$	$\underset{658}{\gamma}$	$\begin{gathered} \gamma \\ 687 \end{gathered}$	$\begin{array}{r} \gamma \\ +29 \end{array}$
February		22	38	$+16$	$6 \cdot 6$	11.3	+4.7	$7 \cdot 7$	$8 \cdot 6$	$+0.9$	667	686	$+19$
March		04	48	+ 44	C 9	11.6	+4.7	$8 \cdot 6$	$8 \cdot 3$	$-0 \cdot 3$	671	686	$+15$
April	-	21	38	$+17$	$7 \cdot 5$	$12 \cdot 1$	$+4 \cdot 6$	$8 \cdot 3$	$8 \cdot 4$	$+6 \cdot 1$	675	683	+ 8
May	...	15	39	$+24$	$8 \cdot 0$	$12 \cdot 6$	$+4 \cdot 6$	$8 \cdot 6$	$9 \cdot 2$	$+0.6$	676	695	$+19$
June	.	26	44	+ 18	$8 \cdot 2$	$12 \cdot 7$	$+4 \cdot 5$	$8 \cdot 5$	$8 \cdot 1$	-0.4	679	682	+ 3
Jnl:	...	21	38	$+17$	8.8	$13 \cdot 0$	$+4 \cdot 2$	$9 \cdot 0$	$8 \cdot 0$	$-1 \cdot 0$	684	678	-6
A ugust	\cdots	20	18	-2	$9 \cdot 0$	13.0	$+4 \cdot 0$	$9 \cdot 0$	$8 \cdot 9$	$-0 \cdot 1$	$68+$	681	-3
September	. ${ }^{\text {a }}$	14	37	$+23$	$9 \cdot 5$	$13 \cdot 5$	$+4 \cdot 0$	$9 \cdot 2$	$8 \cdot 2$	-1.0	684	681	-3
October	\ldots	17	36	+ 19	$9 \cdot 7$	$13 \cdot 7$	$+4 \cdot 0$	$8 \cdot 6$	B-3	$-0 \cdot 3$	677	681	$+4$
November	. ${ }^{\prime}$	25	43	+ 18	$10 \cdot 3$	13.9	$+3 \cdot 6$	$8 \cdot 7$	8.2	-0.5	681	683	$+2$
Doceniber	...	19	44	$+25$	105	14.1	$+3 \cdot 9$	$8 \cdot 9$	$8 \cdot 4$	-0.4	681	686	$+5$
Means	...	18	37	$+19$	$8 \cdot 4$	12.7	+4'3	$8 \cdot 5$	$8 \cdot 5$	$0 \cdot 0$	676	684	$+8$

Kodalkanal Observatory.

1. The observatory is under the control of the Meteorological Department but the records of the observations contiune to be forwarded by the Director of the Kodaikanal observatory to be computed and kept for record in the party.

Every assistance has very kindly been rendered by the Director in all matters connected with the magnetic work.

The results of the self-rccording instruments have been satisfactory.
The observer's absolute observations of horizontal foree, after his returu from a month's leave in Angust 1917, showed a rise of about half a unit in the moment of the observatory magnet (No. 16) up to February 1918, and though there was a slight diminution in his values of " m " in the following month yet they have remained higher than the normal value; whereas the results obtained by the Recorder, who carried on the observations during the absence of the Observer in August and subsequently for short periods, show practically the same values as those obtained by the Observer previons to his leave. The officer in charge, during his visit to the obscrvatory in March 1918 took careful eye-and-ear observations with the observatory instrument and obtained similar values of " n " to those of the Recorder. A scrutiny of the base-line values of the magnctograph and the Observer's observations does not reveal any real change in " m " : the apparent rise in the Observer's values since his return from leave scems to be due to a personal ervor developed by him with the chronograph in taking the vibration observations.
2. Mean values of Declination and H.F. constants.-The table below gives the mean monthly values of the magnetic collimation, revised distribution constants and moment " m " as determined with the revised distribution factor and moment of inertia used for the computations in 1915. Vibration observations with the chronograph were used in deriving the values of " m " in the table.

Mean values of the constants of magnet No. 16 in 1917.

3. Mean base line values.-The following table gives the mean monthly observed and accepted values of the Declination and H.F. base lines; the accepted values have been used to compute the values of these elements for 1917. The H.F. base line values have been derived from H as cletermined with the revised values of the moment of inertia and distribution coefficient used in the computations for 191%.

Base line values of magnotographs in 1917.

4. Mean scale values and temperature range.- The mean scale values for 1917 for an ordinate of $\frac{1}{26}$ inch are :-

Horizontal Force	$5 \cdot 91$ gammas.
Declination	$1 \cdot 03$ minutes.
Vertical Force	$6 \cdot 26$ gammas.

The mean temperature for the year was $17^{\circ} \cdot 4 \mathrm{C}$. with maximum and minimum monthly values of $18^{\circ} \cdot 1 \mathrm{C}$. and $16^{\circ} \cdot 6 \mathrm{C}$. The temperature of reduction is $19^{\circ} \cdot 0 \mathrm{C}$.
5. Mean monthly values and annual changes.- The table below gives the mean monthly values of the magnetic elements for 1916 and 1917 and the annual changes for that period; these annual values are deduced from the values of H as corrected for the moment of inertia and the revised distribution factor used in the computations for 1915.

Annual changes at Kodaikānal in 1916-17.

Dionthe.		Homzontal Fonce:$37000 \text { C. G. S. }+$			ibeclination W. $1^{5}+$			$\begin{gathered} \text { DIP } \\ \text { N. } 4^{5}+ \end{gathered}$			Vertical Force .09000 C. G. S. +		
		1916.	1017.	Annunl chunge.	1916.	1917.	Annual chunge.	1916.	1917.	Annunl change.	1916.	1917.	Annual chnnge.
		γ	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$,	,	,		γ	γ	$\boldsymbol{\gamma}$
Jenuary	...	623	630	+ 7	$25 \cdot 5$	31.4	$+5 \cdot 9$	10.0.	$25 \cdot 2$	$+6.2$	839	906	+67
February	...	630	648	$+18$	$25 \cdot 6$	31.8	$+6.2$	$20 \cdot 4$	$25 \cdot 4$	$+5.0$	855	913	+ 58
March	...	622	658	$+36$	\ldots	32-2	...	$20 \cdot 6$	$25 \cdot 7$	$+5 \cdot 1$	858	916	+ 58
April	...	637	657	+ 20	$26 \cdot 4$	$32 \cdot 6$	$+6 \cdot 2$	21.0	$26 \cdot 3$	+5.3	862	922	+ 60
May		634.	662	+ 28	26.9	33.0	+6.1	21.7	26.9	$+5 \cdot 2$	871	930	+ 59
June	...	638	665	$+97$	$27 \cdot 2$	$33 \cdot 4$	$+6.2$	$22 \cdot 4$	$27 \cdot 6$	$+5 \cdot 2$	879	938	+ 59
July	...	635	665	+ 30	27.5	$33 \cdot 8$	$+6.3$	$23 \cdot 9$	27-2	+ 4.3	884	933	+ 40
August	...	635	653	+ 18	$25 \cdot 4$	$34 \cdot 6$	+6.2	23.5	$27 \cdot 6$	+ 4.1	890	937	+ 47
September	\ldots	630	673	+ 43	$28 \cdot 9$	$35 \cdot 1$	$+6.2$	23.3	28.0	+47	888	943	$+55$
October	\cdots	636	671	+ 35	$29 \cdot 5$	$35 \cdot 4$	$+5.9$	$23 \cdot 8$	$28 \cdot 0$	$+42$	894	942	$+48$
November	\cdots	637	673	+ 36	$29 \cdot 9$	36.0	$+6 \cdot 1$	24.6	28.4	$+3 \cdot 8$	903	947	+ 44
December	\cdots	636	671	+ 35	306	$36 \cdot 0$	$+5.4$	25.1	$28 \cdot 6$	$+3 \cdot 5$	208	950	+ 42
Means	...	633	661	+ 28	...	$33 \cdot 8$...	22.4	$27 \cdot 1$	+ $4 \cdot 7$	878	931	+ 53

> III.-Tables of Results.

Mean values of the magnetic elements at observatories in 1917.

Observatory.	Latilude und Longitude.	Dip.	Declination.	H. F.	V. F.
			- ,	c. g. s.	c.a.s.
Dehrra Dūn $\{$	$\begin{array}{cccc} 30 & 19 & 19 & \mathrm{~N} \\ 78 & 3 & 19 & \mathrm{E} \end{array}$	N. $444.4 \cdot 1$	E. $26 \cdot 5$	-33010	- 32704
$\text { Toungoo }\{$	$\begin{array}{llll} 18 & 55 & 45 & \mathrm{~N} \\ 96 & 27 & 3 & \mathrm{E} \end{array}$	N. $238 \cdot 5$	W. $012 \cdot 7$	- 39037	$\cdot 16684$
Kodaikãnal $\{$	$\begin{array}{llll} 10 & 13 & 50 & \mathrm{~N} \\ 77 & 27 & 46 & \mathrm{E} \end{array}$	N. $427 \cdot 1$	W. 1 133.8	$\cdot 37661$	-02931

Declination $=E \cdot 2^{\circ}+$ tabular quantity．

		\＃	¢000	$\stackrel{\circ}{\dot{\circ}}$
家	－	$\stackrel{+}{\circ}$		$\stackrel{\infty}{\circ}$
$\mathscr{\sim}$		$\stackrel{\sim}{6}$		$\stackrel{\infty}{6}$
\％ิ		$\ddot{\circ}$		$\stackrel{7}{6}$
ล	$\infty \times \infty \quad \cos _{\infty}^{\infty}$ min is if	$\left\lvert\, \begin{aligned} & \ddot{\circ} \\ & \ddot{\circ} \end{aligned}\right.$		$\stackrel{\circ}{\circ}$
ก	 	$\stackrel{7}{6}$		$\stackrel{-}{6}$
$\stackrel{\sim}{\square}$	N006 ザ？ 	$\stackrel{\infty}{\oplus}$		$\stackrel{\square}{6}$
$\stackrel{\sim}{\sim}$		\vec{i}		$\stackrel{8}{8}$
$\stackrel{\square}{-}$		∞	هッ Fion in 6 is	\vec{i}
$\stackrel{\square}{\square}$	～N世 O＋	$\begin{gathered} \infty \\ 0 \end{gathered}$	neq oror	$\stackrel{\sim}{4}$
$\stackrel{\square}{-1}$		\hat{i}	Nresoo	4
\pm	For of	$\underset{\sim}{\infty}$		$\stackrel{+}{\infty}$
13		\dot{i}	以ージ	\cdots
$\begin{aligned} & \text { İ } \\ & \stackrel{\circ}{\circ} \\ & \underset{z}{2} \end{aligned}$		io		$\overline{7}$
\exists	1409040 Non is fis	$\stackrel{\pi}{c}$		is
\bigcirc		$\stackrel{\infty}{\sim}$		$\stackrel{\infty}{-}$
σ		$\stackrel{\rightharpoonup}{\infty}$		$\stackrel{\sim}{6}$
∞		$\stackrel{\varphi}{\div}$	Own Tenn 이읍 으붕	$\stackrel{\infty}{\bullet 0}$
－		$\stackrel{\bullet}{\bullet}$		$\stackrel{\circ}{-}$
∞		$\stackrel{0}{\dot{0}}$	oot ofn かのか かのN	$\stackrel{-}{\infty}$
\bigcirc		$\stackrel{7}{6}$		\pm
\checkmark		$\stackrel{\rightharpoonup}{\dot{\theta}}$		$\stackrel{\rightharpoonup}{2}$
∞		$\begin{array}{\|l\|} \ddot{0} \\ \dot{0} \end{array}$		$\stackrel{7}{\sim}$
＊		$\stackrel{\sim}{\circ}$		$\stackrel{7}{-}$
－		$\stackrel{-}{\circ}$	～ト～فio	${ }_{c}^{c}$
－	 ∞ e	$\stackrel{\infty}{\infty}$	$\overrightarrow{i-i}+600$	－
		－		－

怘	\rightarrow－	$\stackrel{5}{\underline{3}}$	式式式	\％
플	入	－		$\stackrel{\circ}{\circ}$
®		家		\％
\％		$\overline{8}$		$\stackrel{\circ}{0}$
－	入気気呂	$\stackrel{?}{3}$		$\stackrel{\square}{\square}$
옹		$\frac{\text { r }}{\vdots}$		\％
$\xrightarrow{\text { ® }}$		8		흥
\pm		$\stackrel{\text { O }}{\square}$	으유율	\％
\pm		険	드응ㅇㅇ융	응
\because		प्8		$\stackrel{\text { 人 }}{ }$
$\stackrel{10}{ }$		$\stackrel{\text { O}}{0}$		会
\pm		$\stackrel{\rightharpoonup}{3}$		$\stackrel{\text { ¢ }}{\sim}$
$\stackrel{\square}{\square}$	－	$\begin{array}{\|l} x \\ 0 \\ \hline \end{array}$		皆
$\begin{aligned} & \overline{3} \\ & \end{aligned}$		会		谷
ニ		$\stackrel{\rightharpoonup}{\mathrm{O}}$		층
\bigcirc		$\begin{aligned} & \stackrel{\#}{O} \\ & \underline{0} \end{aligned}$	O\％	$\stackrel{3}{\square}$
\cdots		$\stackrel{\square}{\square}$		＇3
∞		三		$\stackrel{\rightharpoonup}{\text { B }}$
－		\bigcirc		$\stackrel{8}{3}$
$=$		\bigcirc		$\bar{\square}$
10		8		$\stackrel{\square}{\square}$
$\stackrel{ }{ }$		$\stackrel{\text { ® }}{ }$		\％
\bigcirc	－	$\stackrel{\rightharpoonup}{8}$		\％
\cdots		$\stackrel{\rightharpoonup}{\square}$		芴
－		\％		$\stackrel{8}{8}$
欹		$\stackrel{\text { I }}{\square}$		$\stackrel{\text { ¢ }}{6}$
喜		宮		$\stackrel{\square}{\text { a }}$

Diurnal Inequality of the Horizonial Force at Dehra Dun in 1917，deduced from the above Table．

$\begin{array}{rrrr} \operatorname{ras} \infty & \infty & \infty \\ +1 & 1 & 1 & 1 \end{array}$	\cdots	$\begin{array}{ll}+ \text {＋} 00+\infty \\ 111 & 1+1\end{array}$	\cdots
$\begin{array}{rrrr} 2+\infty & \infty & 0 & 0 \\ 1 & 1 & 1 & 1 \end{array}$	\cdots	$\begin{array}{cc}\text { ¢ } 0 \text { N } \\ 111 & 1+1\end{array}$	\square
$\begin{array}{rlll} \text { r-NE } & \infty \propto \infty \\ 111 & 1 & 1 \end{array}$	\cdots	$\begin{array}{ccc}010000 \\ 111 & 1\end{array}$	：
	\cdots	$\begin{array}{cccc}-0 & 0 & 0 & - \\ 1 & 1 & 0 \\ 1 & 1 & 1 & 1\end{array}$	\bigcirc
$\begin{array}{rrr} -\infty & 0 \infty & 00 \\ 1 & 1 & 1 \end{array}$	$\stackrel{1}{2}$	$\begin{array}{ccc}\text { O}=1- & 0.1010 \\ 1111 & 11 & 1\end{array}$	\cdots
$\begin{array}{ccc} \sim \infty & 000 \\ 1 & 1 & 1 \end{array}$	$\begin{gathered} 1- \\ ! \end{gathered}$	ジッ心	\pm
$\left.\begin{array}{ccc} \lambda \infty & \infty & \infty \\ 1 & 1 & 1 \end{array} \right\rvert\,$	L	$\begin{array}{cccc} \approx \\ \cdots & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{array}$	$\begin{gathered} \infty \\ 1 \end{gathered}$
$\begin{array}{ccccc} -\infty & \infty & \infty & \infty & \infty \\ 1 & 1 & 1 & 1 & 1 \end{array}$	$\begin{gathered} \therefore \\ 1 \end{gathered}$	$\begin{array}{cc} \therefore+\infty & \pi+\infty \\ 1 & 1 \end{array} 1+1$	∞
$\begin{array}{rll} -\infty-\infty & 00 \\ +11 & 111 \end{array}$	1	$\begin{array}{ll} -10+ & -10 \infty \\ +++ & +++ \end{array}$	+ + +
$\begin{array}{rr} +\infty-\infty & \infty+\infty \\ +++ & +11 \end{array}$	$+$		$\stackrel{+}{+}$
	$+$		$\xrightarrow{8}$
$\begin{aligned} 0 \infty+\infty & \infty \rightarrow \infty \\ +++ & +++ \end{aligned}$	F		$\stackrel{\text { ¢ }}{\substack{\text { a } \\++}}$
$\begin{aligned} \infty+\infty & \infty+\infty \\ +++ & +++ \end{aligned}$	$\stackrel{\infty}{+}$		$\stackrel{+}{+}$
	$+$		os +
$\begin{array}{rr} \text { NNE } & +\infty 0 \\ 1++ & +++ \end{array}$	＋		－
$\begin{array}{rr} 20 \infty-1 & 0 \infty 9 \\ 1+1 & 1+4 \end{array}$	$\begin{aligned} & 10 \\ & + \end{aligned}$	$\begin{array}{ccc} -1 & \pi & -1 \\ 1 & 1 & 1 \end{array}$	0
$\begin{array}{rr} 2 \infty+\infty \\ ++1 & 1++ \end{array}$	$+$		\cdots
$\begin{array}{rr} \lambda+\infty & N 1000 \\ ++1 & +++ \end{array}$	$\begin{aligned} & \text { n } \\ & + \end{aligned}$	$\begin{array}{cccc} \hline+18 & \infty & \infty & \infty \\ 1 & 1 & 1 & 1 \end{array} 111$	$\stackrel{\square}{\circ}$
$\begin{array}{cc} x \infty-\infty & \infty-\infty \\ ++1 & +++ \end{array}$	$\begin{aligned} & -1 \\ & + \end{aligned}$	－Nめ～ーが	$\stackrel{\sim}{\sim}$
No O－ +1	I		＋
	$\begin{gathered} \sim \\ 1 \end{gathered}$	$\begin{array}{lll} N+O & 0 N O \\ 111 & 11 \end{array}$	\square
$\begin{array}{rrr} \hline 000 & 000 \\ 1 & 1 & 1 \end{array}$	$\begin{aligned} & \infty \\ & 1 \end{aligned}$	$\begin{array}{cc}\text { N00 } & \text { E00 } \\ 111 & 1\end{array}$	1
$\begin{array}{rlll} \lambda+\infty & \infty & 0 & 0 \end{array}$	\cdots	$\begin{array}{cc}+000 \\ 111 & 11+\end{array}$	1
$\left\lvert\, \begin{array}{cccc} \infty & \infty & \infty & \infty \\ \hline & 1 & 1 & \infty \\ 1 & 1 & 1 \end{array}\right.$	$\begin{gathered} \boldsymbol{+} \\ 1 \end{gathered}$	$\begin{array}{ccccc}\text { mra } \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\stackrel{1}{1}$
$\begin{array}{rrr} +-\cos & -\infty N \\ 111 & 111 \end{array}$	\cdots	$\begin{array}{ccccc}\infty \rightarrow+ \\ 1 & 1 & 1 & 1 & 1\end{array}$	$\stackrel{+}{4}$
	\％		号

Hoar：	Mid．	1	2	3	4	6	6	7	8	9	10	11	श．．．．＂	13	14	15	16	17	18	19	20	21	22	23	Mid．	Means
	$\underset{678}{\text { r }}$	${ }_{678}{ }^{7}$	678	${ }_{\text {fid }}{ }^{\gamma}$	${ }_{678}$	${ }_{678}$	$\stackrel{\gamma}{678}$	${ }_{6}{ }^{2} 9$	${ }_{68}^{\gamma}$	$\underset{6}{7}{ }_{6}^{7}$		${ }_{6}^{7} 8$	8	$\stackrel{\gamma}{6}$	$\stackrel{\gamma}{6}{ }_{6}$	${ }_{6}{ }^{7} 6$	${ }_{6}{ }^{\gamma} 77$	$\stackrel{\gamma}{678}$	${ }_{6}^{\gamma}$	${ }_{678}^{\gamma}$	${ }^{6} 8$	$\stackrel{\gamma}{6}$	$\stackrel{\gamma}{9}$	$\stackrel{\gamma}{\gamma}$	$\stackrel{7}{7}$	$\stackrel{\gamma}{7}$
	681	6×2	68.2	681	63\％	681	682	60：3	685	68.2	676	671	（i6）	667	670	674	677	679	688	681	681	65_{2}	688	683	683	677 679
	686	687	686	686	686	686	687	690	689	663	${ }^{6} 73$	664	662	666	672	677	681	682	¢81	G93	685	685	697	657	687	681
	725	725	726	726	726	726	726	729	729	722	716	207	704	707	713	718	720	721	722	725	726	728	728	729	\％29	722
	7725	736	723	735	726	726	726	727	7：7	723	718	711	709	713	715	717	720	72，	723	723	725	726	727	727	726	722
	736	736	736	735	735	735	735	734	736	736	734	730	729	727	727	728	730	733	734	734	734	736	736	－36	736	733
Meant	705	706	706	705	706	705	706	707	708	704	［9，9	693．	c90	692	695	698	701	703	703	704	705	706	707	707	\％07	702
	690	690	690	690	690	690	693	694	601	683	67.4	66.5	665	670	676	681	684	685	686	687	688	690	691	69	691	
	698	697	698	698	698	699	702	709	694	686	［80	635	677	681	684	688	692	694	694	694	696	697	697	698	699	695
	704	705	70¢	705	705	706	712	710	702	695	689	650	679	682	686	690	695	701	704	703	704	\％ 05	706	706	707	699
	718	718	718	719	718	720	724	722	716	79	700	69	697	700	703	708	713	717	717	716	717	718	719	720	720	
	731	731	730	731	${ }^{731}$	731	738	736	729	719	710	310	703	701；	713	719	723	726	726	725	727	72.5	729	723	728	724
	728	728	7 ± 9	729	729	729	732	734	730	722	714	204	705	ius	714	719	722	723	723	725	727	7\＃8	729	73）	730	723
Menns	712	712	712	712	712	713	717	716	710	702	693	687	688	691	696	701	705	708	708	703	710	711	712	712	713	706

		10 +	$\begin{array}{ll}0 \sim \infty & \operatorname{cotr} \\ +++ & +++\end{array}$	$\stackrel{+}{+}$
	$\begin{array}{ll} -+\infty & -\infty \infty \\ \gamma_{+}++ & +++ \end{array}$	\cdots	OON ++++++	$\stackrel{+}{+}$
		$\begin{aligned} & \bullet \\ & + \end{aligned}$	$\begin{array}{ll}\text { Oner } & \text { oneo } \\ +++ & +++\end{array}$	$\stackrel{+}{+}$
		$+$		$\stackrel{+}{+}$
		$\xrightarrow{7}+$	$\begin{array}{ll} \infty+\infty & +\infty+\infty \\ +++ & +++ \end{array}$	$\pm+$
		$\begin{aligned} & \text { ~ } \\ & + \end{aligned}$		$\stackrel{+}{+}$
	$\begin{array}{ll} +-10 & 0-1- \\ ++ & ++ \end{array}$	$\stackrel{+}{+}$	$\begin{aligned} & \text { Hevo +NO } \\ & +++\quad++ \end{aligned}$	$\stackrel{+}{+}$
	$\begin{aligned} & -0-100 \\ & r+1 \end{aligned}$	$+$	OnN HNO ++++	N +
		7	$\begin{array}{ccc}-10+1 \\ 1 & 1 & 11\end{array}$	\cdots
		1	$\begin{gathered} +\infty \\ +\infty \\ 1 \\ 1 \end{gathered} 1$	1
	$\begin{array}{rl}\text { Nosos } \\ \cdots 111 & 111\end{array}$	F	$\begin{array}{ccc} 0 \infty \\ 111 & 0 \\ 111 \end{array}$	1
		은	$\stackrel{n}{1}=\frac{\pi}{1} \frac{\infty}{1}$	$\frac{18}{1}$
	$\therefore \geqslant \underset{1}{\sim} \underset{1}{\infty}$	$\stackrel{\sim}{1}$		$\stackrel{\infty}{1}$
		\bigcirc	令に皆	$\stackrel{\square}{1}$
		$\begin{gathered} + \\ 1 \end{gathered}$	ニ会	\cdots
		$\stackrel{+}{2+}$		4
		$+$	$\begin{array}{ll} =\text { No } & \text { ont } \\ +++ & +++ \end{array}$	$+$
		$+$	$\begin{array}{ll} \infty \infty \\ +++ \\ +++7 \end{array}$	$\stackrel{+}{+}$
	$\begin{array}{ll}\text {－¢ } & \text {＋゙N } \\ +++ & +++\end{array}$	+ +		$\overline{+}$
		$\stackrel{+}{+}$	$\begin{aligned} & \text { nRE RN- } \\ & ++++++ \end{aligned}$	$+$
		$+$	$+++\quad+++$	$\stackrel{\bullet}{+}$
	$\begin{array}{ll}\text {－No } \\ + \text { Hon } \\ +++ & +++\end{array}$	∞ +	$\begin{array}{ll} \text { we } 0 & \text { 世N } \\ +++ & +++ \end{array}$	\cdots
	$\begin{array}{ll} -\infty \infty & +\infty \infty \\ +++ & +++ \end{array}$	+ +	10 © 0 上 0 e $+++\quad+++$	$\stackrel{+}{+}$
	$\begin{array}{ll} -\infty \infty & \infty+\infty \\ +++ & +++ \end{array}$	+ +	$\begin{array}{cc} \text { se se } 0 & \text { orre } \\ +++ & +++ \end{array}$	$\stackrel{+}{+}$
	$\begin{array}{ll} -\infty & +\infty \\ +++ & +++ \end{array}$	∞ +		$\stackrel{+}{+}$
		－		硓

[^2]$D_{i p}=N \cdot 44^{\circ}+$ tabular quantity．

名	＊－	\ddagger		j
遂		$\%$		$\stackrel{\rightharpoonup}{\square}$
®		$\stackrel{+}{+}$		\square \square
สั	－¢¢¢	－	 	3
ล		$\underset{~}{N}$		¢ + \vdots
\bigcirc		\ddagger		\＄
$\stackrel{\square}{\square}$		$\begin{aligned} & \bullet \\ & \text { j } \end{aligned}$	O＋6 reco 	+
\pm		$\begin{aligned} & \hline \\ & \dot{j} \end{aligned}$		\pm
今		$1 \begin{gathered} \ddagger \\ \vdots \\ \hline \end{gathered}$		－
9		$\begin{aligned} & \text { N } \\ & \dot{j} \end{aligned}$		－
$\stackrel{\sim}{\sim}$		$\begin{aligned} & \infty \\ & \dot{\$} \\ & \hline \end{aligned}$		$\stackrel{\rightharpoonup}{\sim}$
$\vec{\sim}$		$\begin{aligned} & \stackrel{+}{2} \\ & \dot{\sim} \end{aligned}$		$\stackrel{+}{+}$
$\stackrel{\square}{\square}$		$\begin{aligned} & \hline \stackrel{\circ}{\text { M }} \end{aligned}$		－
哲	$\sigma \mathrm{OHO} \rightarrow \mathrm{O}$ 	$\begin{aligned} & \infty \\ & \dot{j} \end{aligned}$		守
Ξ		○		18 7
9		$\begin{aligned} & \text { ! } \\ & \text { in } \end{aligned}$		$\stackrel{+}{\text { ¢ }}$
∞		$\begin{aligned} & \dot{\infty} \\ & \dot{9} \end{aligned}$		\cdots
∞		$\vec{\ddagger}$		
－		$\stackrel{N}{\sim}$		$\stackrel{\infty}{\text {－}}$
\cdots		$\begin{aligned} & \infty \\ & \ddagger \end{aligned}$		$\stackrel{\circ}{+}$
\sim		$\begin{aligned} & \infty \\ & \ddagger \end{aligned}$		号
\rightarrow		$\stackrel{\rightharpoonup}{\ddagger}$		$\stackrel{0}{\square}$
∞		$\stackrel{7}{7}$		$\stackrel{\square}{\square}$
N		$\stackrel{+}{\ddagger}$		－
\rightarrow	－	$\begin{aligned} & 12 \\ & 7 \end{aligned}$		$\stackrel{0}{7}$
易		$\stackrel{\because}{\dot{j}}$		？
$\begin{gathered} \text { g } \\ \text { 罟 } \end{gathered}$		邑		$\stackrel{\text { 晚 }}{\text { a }}$

Declination $=W .0^{\circ}+$ tabular quantity．

$\begin{aligned} & \text { 品 } \\ & \text { ed } \end{aligned}$	－	$\stackrel{1}{\text { ® }}$		$\stackrel{\text { ¢ }}{\text { ¢ }}$
家	兑号号	$\stackrel{\text {－}}{\text {－}}$		$\stackrel{9}{9}$
\％		$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}$		$\stackrel{\rightharpoonup}{\text { ¢ }}$
®		$\begin{aligned} & \infty \\ & \stackrel{\infty}{2} \end{aligned}$		$\stackrel{\sim}{9}$
ส		-		$\stackrel{\sim}{\sim}$
앙		$\begin{aligned} & \stackrel{\oplus}{\dot{-}} \end{aligned}$		$\stackrel{\sim}{¢}$
$\underset{\sim}{\circ}$	$\stackrel{r \infty}{\infty} \underset{\sim}{\infty}=\infty \times \infty$	$\stackrel{\oplus}{i}$		$\stackrel{8}{9}$
∞		$\stackrel{\oplus}{\dot{-}}$		$\stackrel{\sim}{\sim}$
$\stackrel{\square}{7}$		$\stackrel{\leftrightarrow}{\dot{\sim}}$		$\stackrel{\text { ¢ }}{\square}$
$\stackrel{\square}{\square}$		$\begin{array}{\|c} \stackrel{\circ}{-} \\ \hline \end{array}$		$\stackrel{\because}{\sim}$
：		$\begin{aligned} & 0 \\ & \end{aligned}$		j
\pm		$\begin{aligned} & \stackrel{\circ}{\oplus} \\ & \stackrel{y}{2} \end{aligned}$	のッが 	$\stackrel{\infty}{ \pm}$
$\stackrel{\sim}{\sim}$		$\begin{aligned} & \infty \\ & \dot{n} \\ & \dot{n} \end{aligned}$		－
$\begin{aligned} & \text { 등 } \\ & \underset{\sim}{2} \end{aligned}$		$\vec{\sim}$		$\stackrel{\square}{ \pm}$
\exists				$\stackrel{\bullet}{\bullet}$
\bigcirc		$\stackrel{\infty}{\doteq}$	 	－
$\stackrel{\square}{\text { c．}}$		$\stackrel{\stackrel{\rightharpoonup}{\boldsymbol{g}}}{ }$	$\stackrel{N}{\circ} \dot{\sim}$	$\stackrel{?}{-}$
$\stackrel{\sim}{\sim}$	－908 00\％ 	$\overline{\mathrm{i}}$		$\stackrel{\sim}{*}$
－		$\underset{\text { 玉i }}{\text { In }}$	NenO＋me 응ㅇㅇ 으ㅇㅡㅡㄹ	$\stackrel{\text { er }}{\stackrel{1}{-}}$
\bullet		$\overline{\dot{\sim}}$		$\stackrel{\pi}{\#}$
10		$\overline{\stackrel{\rightharpoonup}{\dot{m}}}$	$\text { 家宝宝 } \dot{A}$	$\stackrel{8}{9}$
$+$				$\stackrel{\bullet}{-3}$
\because		$\stackrel{\text { ¢ }}{\sim}$	○ロ4 mose 	$\stackrel{\bullet}{\text {－}}$
\cdots		$\left[\begin{array}{l} \stackrel{0}{\dot{\omega}} \\ \hline \end{array}\right.$		$\stackrel{\bullet}{\square}$
－		$\left\|\begin{array}{l} \circ \\ \dot{\Delta} \end{array}\right\|$		$\stackrel{+}{\square}$
至		$\left\lvert\, \begin{aligned} & 0 \\ & \dot{1} \\ & -1 \end{aligned}\right.$		$\stackrel{9}{9}$
$\begin{aligned} & \text { 喜 } \\ & \text { 呙 } \end{aligned}$		遌		邑

\begin{tabular}{|c|c|c|c|}
\hline \& \(\stackrel{\circ}{\circ}\) \& \& \\
\hline \& \[
\vec{i}
\] \& － \& \begin{tabular}{l}
m \\
0 \\
\(i\) \\
\hline
\end{tabular} \\
\hline \& 훙 \& \& +
+
+
+
+

+

\hline \& \[
\dot{\circ}

\] \& \& | + |
| :--- |
| |

\hline \& $$
\stackrel{\rightharpoonup}{\mathrm{e}}
$$ \& mén

$$
\begin{array}{ll}
000 \\
111 & 00
\end{array}
$$ \& ＋

\hline ｜rccr｜ \& $$
\begin{aligned}
& \bar{\vdots} \\
& +
\end{aligned}
$$ \& \[

$$
\begin{array}{lc}
-0 & -0 \\
000 & 0 \\
1 & 1
\end{array}
$$
\] \& $\stackrel{7}{-1}$

\hline \& $$
\overline{\stackrel{\sim}{0}}
$$ \& \& $\stackrel{-}{-}$

\hline \& $$
\begin{aligned}
& \stackrel{\circ}{\circ} \\
& +
\end{aligned}
$$ \& \& $\stackrel{3}{3}$

\hline $$
\begin{aligned}
& \text { ont } \overrightarrow{0} \dot{0} \dot{0} \dot{0} \\
& +11+1
\end{aligned}
$$ \& \[

\stackrel{\rightharpoonup}{\dot{\circ}}
\] \& $\cdots \infty<\infty$ 은 ilit \& －

\hline \& $$
\begin{aligned}
& \infty \\
& i \\
& i
\end{aligned}
$$ \& \& $\stackrel{\infty}{1}$

\hline \& $$
\begin{aligned}
& \ddot{0} \\
& i
\end{aligned}
$$ \& \& －

\hline \& $$
\begin{aligned}
& \infty \\
& i \\
& i
\end{aligned}
$$ \& \& 1

0
i
i

\hline \& $$
\ddot{0}
$$ \& \& $\stackrel{\square}{\square}$

\hline ar
000
000
$1+4$

$1+7$ \& $$
\begin{aligned}
& \infty \\
& \dot{+} \\
& +
\end{aligned}
$$ \& \& io

\hline \& $$
\begin{aligned}
& \hline \infty \\
& \dot{+} \\
& +
\end{aligned}
$$ \& \& $\stackrel{+}{+}$

\hline \& $$
\begin{aligned}
& \pm \\
& \pm \\
& \hline
\end{aligned}
$$ \& \& $\stackrel{\text { ¢ }}{\stackrel{+}{+}}+$

\hline \& $$
\left\lvert\, \begin{aligned}
& \stackrel{\circ}{+} \\
& +
\end{aligned}\right.
$$ \& \& $\stackrel{+}{+}$

\hline \& $\stackrel{+}{\circ}$ \& \& +
+
+
+

+

\hline $$

$$ \& \[

\] \& \& $\stackrel{+}{+}$

\hline $$
\begin{array}{lll}
\overrightarrow{0} 0 \\
\dot{i} \dot{0} & 0 \\
i & 0 & 0 \\
i & 0 \\
i
\end{array}
$$ \& \[

$$
\begin{aligned}
& \pi \\
& i
\end{aligned}
$$
\] \& \& m

0
+

+

\hline - \& \[
\left\lvert\, $$
\begin{aligned}
& 0 \\
& 0 \\
& 1 \\
& \hline
\end{aligned}
$$\right.

\] \& \& | + |
| :--- |
| + |
| + |
| + |

\hline \& $\stackrel{\square}{\circ}$ \& \& | + |
| :---: |
| + |
| + |
| + |

\hline \& \[
\overrightarrow{\dot{\circ}}+

\] \& \& | ¢ |
| :--- |
| + |
| + |
| + |

\hline \& $$
\stackrel{\rightharpoonup}{\dot{\circ}}
$$ \& \& $\stackrel{\rightharpoonup}{\dot{0}}+$

\hline \& $$
\begin{aligned}
& \dot{3} \\
& +
\end{aligned}
$$ \& \[

$$
\begin{array}{r}
00 \ddot{m a r} \\
\text { oop } \\
\text { ioili } \\
\hline
\end{array}
$$
\] \& －

\hline \& 号 \& \& 最

\hline
\end{tabular}

Hourly Means of Horizontal Force in C．․ S．units（cnrrected for temperature）at Toungoo in 1917，from all available days．Forizontal Forco＝－38000 $0.9 . S .+$ tabular quantity．

曾				吕
\＃	入－	矿		－
\％	－	哭		爰
ล		\％		$\stackrel{9}{9}$
ล				$\stackrel{9}{\square}$
8	－	哭		응
$\underset{\sim}{9}$		驫		シ
\pm		\％		或
$\stackrel{\sim}{\square}$		＂̈		哭
9		敛		哭
$\stackrel{\square}{-}$		雨		$\stackrel{+}{\square}$
\pm	－	窝		荺
$\stackrel{\square}{\sim}$		吕		－
$\begin{aligned} & \stackrel{a}{3} \\ & \frac{3}{2} \end{aligned}$		$\underline{\square}$		$\stackrel{8}{8}$
\pm		19		F
\bigcirc		咢		
∞		$\stackrel{\circ}{-}$		\％
∞		$\stackrel{\text { ت }}{\stackrel{1}{c}}$		¢
－		令		층
\cdot		$\stackrel{\cong}{シ}$		$\stackrel{\text { J }}{ }$
\therefore		\＃		\％
\rightarrow		3		층
\because		축		흥
\because		丞		\％
－		$\stackrel{\text { 皆 }}{\text { ¢ }}$		\％
妾				$\stackrel{\square}{3}$
$\stackrel{\pi}{3}$				害

Diurnal Inequality of the Vertical Force at Toungoo in 1917, dedured froin the above Table.

Hourly Menns of the Din at Toungoo in 1917．Siferminad from all annilable days．Dip $=$ N． $23^{\circ}+$ tabular quantity．

	人	¢	－	$\dot{\infty} \dot{\infty} \dot{\infty} \dot{\infty} \dot{\infty} \dot{\infty} \dot{\infty}$	$\stackrel{\sim}{\infty}$
道			－i	がの ○の～ 	\％
$\mathscr{*}$	－	No	－	のロロ ののか 	$\stackrel{8}{\text { ¢ }}$
ヘ			$\stackrel{\square}{6}$		$\stackrel{+}{*}$
＊		$\begin{aligned} \text { BOS } \\ \text { BOS } \end{aligned}$	$\stackrel{\stackrel{\sim}{\circ}}{\dot{\sigma}}$		－
ลิ			\vec{j}	$\infty \infty \quad \sim 0$ 	$\stackrel{\text { \％}}{\sim}$
$\stackrel{\bigcirc}{-}$	$\left\lvert\, \begin{array}{ll} \infty & 0 \\ \ll 0 \\ \infty & \infty \\ 0 \end{array}\right.$		$\stackrel{\circ}{\dot{\sigma}}$	NEM 以 $\infty<\infty \quad \infty \infty \infty$	$\stackrel{\circ}{\circ}$
\pm			$\underset{\infty}{\infty}$		\bigcirc
\pm			$\stackrel{\infty}{\infty}$		$\stackrel{\circ}{\circ}$
$\stackrel{-}{\square}$	\|	$\begin{aligned} & N \\ & \infty \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$		$\stackrel{\infty}{\infty}$
\because	∞－ $\dot{\infty} \infty$		$\stackrel{8}{\dot{\infty}}$		$\stackrel{-}{\infty}$
\pm	$\left\lvert\, \begin{array}{ll} +\infty+\infty \\ \infty & \infty \\ \infty & \infty \end{array}\right.$		$\stackrel{n}{i}$		$\stackrel{\sim}{\sim}$
$\stackrel{\square}{\sim}$	\|os		$\stackrel{\infty}{\dot{\oplus}}$	－	$\stackrel{+}{0}$
$\begin{aligned} & \text { 另 } \\ & \text { 號 } \end{aligned}$	ant is is	$\begin{aligned} \text { His } \\ i \end{aligned}$	$\stackrel{8}{8}$		in
$=$		$\begin{aligned} 0 \\ 0 \end{aligned}$	$\stackrel{4}{6}$	Lo in in	is
3	\|rioc		$\begin{aligned} & 0 \\ & \infty \end{aligned}$		$\stackrel{\infty}{0}$
\bigcirc	$\dot{\infty}-\dot{\infty}$	－－－－	\therefore		\because
∞		$\begin{aligned} & +\infty \\ & \dot{\infty} \boldsymbol{\infty} \dot{\infty} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \infty \end{aligned}$	붕웅	\cdots
15	$\left\lvert\, \begin{array}{cc} \infty-2 \\ 0.0 & 0 \\ 0 \end{array}\right.$	w:	＝		$\stackrel{\square}{-}$
2		Qtt $\infty \infty \infty$	$\bar{\square}$	noln ation 90日	$\stackrel{-}{-}$
12	$\begin{aligned} & \text { no No } \\ & \text { sosion } \end{aligned}$		$\stackrel{\square}{\circ}$		$\stackrel{+}{5}$
＋		001	\because		$\stackrel{+}{6}$
\cdots	$\begin{array}{r} -\infty \times 1 \\ \operatorname{cosin} \end{array}$	$\overrightarrow{i x} \cdot \vec{o}$	\because		$\stackrel{3}{ }$
＊	$\left\lvert\, \begin{array}{ll} -4104 & 0 \\ 0.000 & 0 \end{array}\right.$	$\begin{aligned} & \text { Nop } \\ & 0 \text { o } \\ & \hline \end{aligned}$	$\stackrel{\%}{\approx}$		$\stackrel{+}{+}$
－	－	$\begin{gathered} \text { Nö́ } \\ \dot{\sigma} \dot{\theta} \dot{0} \end{gathered}$	$\stackrel{?}{j} .$		$\stackrel{\square}{6}$
吴	¢0゙サ	－ $01-0$	$\stackrel{7}{3}$		\cdots
坒		$\xrightarrow[\text { ¢ }]{\text { O }}$	2		弟

Declination $=W .1^{\circ}+$ tabular quantity．

		$\begin{aligned} & \hline \dot{\infty} \\ & \underset{\sim}{2} \end{aligned}$	$\omega 0$＋∞ の 	$\stackrel{\infty}{\text { ¢ }}$
辺		$\stackrel{\stackrel{\rightharpoonup}{i}}{ }$	 	$\stackrel{\infty}{\text { ¢ }}$
$\mathscr{\sim}$		$\stackrel{\infty}{\ddot{\sim}}$	$\cdots \infty \quad$ N ∞ O 	$\stackrel{\infty}{\text { ¢ }}$
ผิ	$\infty \infty \rightarrow \infty<\infty$ 	$\underset{\sim}{\sim}$	トONのが 	$\stackrel{\circ}{\text { ¢ }}$
ज		$\stackrel{\underset{\sim}{\infty}}{ }$		$\underset{\sim}{ \pm}$
2	－\because 号号 	$\begin{aligned} & \bullet \\ & \stackrel{\circ}{\circ} \end{aligned}$		$\stackrel{\circ}{\stackrel{+}{\square}}$
$\stackrel{\sim}{-}$		$\begin{aligned} & \varphi \\ & \ddot{n} \end{aligned}$		$\stackrel{\infty}{\infty}$
$\stackrel{\infty}{\sim}$		$\stackrel{\stackrel{\rightharpoonup}{\dot{\circ}}}{ }$		$\stackrel{\square}{\circ}$
\cdots		$\begin{aligned} & 0 \\ & \ddot{B} \dot{8} \end{aligned}$		号
$\stackrel{\square}{\square}$		$\ddot{\theta}$	にのに $\infty \infty$ 	$\stackrel{\sim}{0}$
$\stackrel{1}{2}$	－$-\infty$ 的 $-\infty$ あ边突 品足足	$\begin{aligned} & \hline \infty \\ & \end{aligned}$	一円へ ナーロ 	\＃
\pm	 	$\begin{aligned} & \infty \\ & \dot{\sim} \\ & \dot{\sim} \end{aligned}$	 	c
\cong		$\begin{aligned} & \stackrel{\stackrel{\rightharpoonup}{+}}{2} \end{aligned}$	$0 \infty 0010 \mathrm{~m}$ 	＋
［10	 	$\begin{aligned} & \because \\ & \stackrel{\pi}{7} \end{aligned}$	$\div 0 \%$ कит 	\pm
\exists			$x \div x$	－
\bigcirc		$\stackrel{\underset{\sim}{\circ}}{ }$		$\stackrel{\infty}{\infty}$
σ.		$\begin{aligned} & \bullet \\ & \text { en } \end{aligned}$	 	－
∞	以 0 ロ 10 サल 	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$	みon Q： 	$\stackrel{\square}{\square}$
－		$\left\lvert\, \begin{aligned} & \because \\ & \stackrel{1}{\infty} \end{aligned}\right.$		$\stackrel{\infty}{\square}$
\bullet			$\rightarrow \infty$ N N N－ 	$\stackrel{7}{4}$
\because		$\stackrel{\rightharpoonup}{ \pm}$	2007 $10 \% \infty$ 이이우웅	－
＋		$\begin{aligned} & \infty \\ & \check{n} \end{aligned}$	150N 5 なo 	－
\cdots		$\left\lvert\, \begin{array}{l\|} \infty \\ \% \\ \end{array}\right.$	$100 \infty \quad 00=$ 	$\stackrel{\bullet}{\text { ® }}$
\cdots			$\# 4-\infty \quad \theta \in \infty$ 	－
－		$\mid \stackrel{N}{\dot{\circ}}$		－
		$\stackrel{\stackrel{-}{\dot{\infty}}}{\stackrel{\rightharpoonup}{\circ}}$		¢
$\begin{aligned} & \text { In } \\ & \stackrel{\rightharpoonup}{u} \end{aligned}$		$\begin{aligned} & \stackrel{m}{\tilde{3}} \\ & \underset{\sim}{3} \end{aligned}$		硽

Hour＊	Mid．	1	$\underline{\square}$	3	4	5	${ }^{\circ}$	7	8	9	10	11	Noon	13	14	15	16	17	18	19	20	21	22	23	Mid	Мепия
	${ }_{6}{ }^{\gamma}$	${ }_{6} 7$	$\underset{\sim}{\gamma}$	${ }_{6}{ }^{7}$	615	γ 617	$\underset{61 r^{2}}{ }$	${ }_{\text {ris }}$	$\underset{6}{7} \stackrel{\gamma}{7}$	6	${ }_{68}{ }^{2}$	${ }_{6}{ }^{\gamma} 7$	$\stackrel{\text { crig }}{\text { c／}}$	${ }_{6}{ }^{7}$	$\underset{\sim}{7} \times 7$		$\stackrel{r}{\gamma}$	$\underset{625}{7}$	$\underset{620}{7}$	616	$\underset{614}{7}$	$\underset{8}{8}$	${ }_{615}^{7}$	$\underset{813}{7}$	${ }_{6}{ }^{\gamma} 16$	$\stackrel{\gamma}{7}$
	694	627	629	62： 1	$6: 31$	${ }^{631}$	6：31	637	651	（in）	694	706	702	690	672	656	649	$6+4$	639	633	6.9	627	627	$6{ }^{1} 25$	625	
\cdots Amr	627	631	6i32	632	633	133	6331	64.5	674	709	739	745	735	701	671	653	647	650	647	636	632	829	627	627	6.27	658
$=$ Oct．	6 4	6＋4	646	Rif	（i50	649	649	660	687	719	740	746	736	717	697	674	671	663	653	6.7	645	${ }^{644}$	640	642	648	671
	（1．50	652	$1: 153$	$6{ }^{6} 53$	（6．54	655	658	669	$68{ }^{6}$	$70{ }^{\circ}$	780	721	716	708	696	689	680	671	663	6 65	652	649	651	653	652	
（1）re．	6！！	650	6.56	$63: 3$	654	650	659	1669	681	69\％	700	701	706	$70 \pm$	701	692	680	672	$66{ }^{2}$	65%	653	652	649	648	650	671
Mears	634	637	U38	8：39	6 40	C40	$6: 1$	650	669	193	712	718	712	696	679	005	659	${ }_{6} 5$	647	64	638	636	635	635	636	659
Auril	63：	6,33	631	636	6336	634	635	648	679	715	736	737	720	694	669	653	649	644	639	633	631	629	630	630	631	657
－Mas	63.8	638	640	640	641	641	644	\％ $0^{\circ} 3$	675	699	720	728	721	710	687	667	654	649	646	641	［；39	639	636	637	639	662
D June	635	6410	641	64：	641	6＊0	646	647	${ }^{6}+6$	692	718	732	733	717	$70 \overline{0}$	684	664	652	650	646	644	641	6＋1	640	641	665
	641	641	641	641	642	643	646	651	670	695	717	734	735	721	701	678	658	648	$6+6$	644	642	641	641	640	641	
Ang．	61.8	620	$6: 1$	622	625	622	627	635	$6{ }^{6} \mathbf{3}$	68	714	729	724	715	699	676	657	645	639	631	625	627	625	624	626	653
（sep．	6．to	640	644	6＋3	644	6 ± 2	$6+1$	654	681	7×2	751	764	755	734	705	683	670	666	659	549	6＊	642	641	640	640	673
Меяпя	635	635	637	637	638	637	640	$6+8$	¢71	702	726	737	731	715	694	674	659	601	6＋7	641	638	637	636	635	636	663

Diurnal Inequality of the Horizontal Force at Kodaikanal in 1917，deduced from the above 7able．

	$\stackrel{9}{1}$		令
	＋		雨
	※ ત		－
	$\mid \underset{\sim}{\infty}$	～～＊＊＊＊	－
	$\stackrel{\rightharpoonup}{\mathbb{N}}$	©	1
	$\mid \underset{1}{\alpha}$		ส
	$\stackrel{\stackrel{1}{1}}{1}$	禺禺号	$\stackrel{\square}{\square}$
	$\left\lvert\, \begin{aligned} & \infty \\ & 1 \end{aligned}\right.$		$\stackrel{\text { N }}{1}$
$\begin{array}{rrr} \rightarrow+-7 & 0-\infty \\ 1+1 & ++ \end{array}$	\bigcirc	$\begin{array}{ccc}\infty \\ \infty & -1 & -+\infty \\ 111 & 1+1\end{array}$	${ }^{+}$
	\circ		\cdots
	$1 \begin{gathered} \text { I } \\ + \end{gathered}$		$\stackrel{\text { ¢ }}{+}$
	$\left\lvert\, \begin{aligned} & \mathrm{n} \\ & + \end{aligned}\right.$		
	$\stackrel{0}{1}$		$\stackrel{+}{+}$
	$\left\lvert\, \begin{aligned} & 90 \\ & \hline \end{aligned}\right.$		華
			$\stackrel{\text { \％}}{+}$
	$\stackrel{\rightharpoonup}{\infty}$		$\stackrel{\text { c．}}{+}$
	10		$\stackrel{+}{+}$
	$\left\lvert\, \begin{aligned} & 0 \\ & 1 \end{aligned}\right.$		\cdots
がニ畕	∞		
	$\underset{1}{9}$		
	$\stackrel{\xi}{1}$		$\stackrel{\text { ni }}{\text { if }}$
	$\left\lvert\, \begin{gathered} 8 \\ 10 \end{gathered}\right.$	示各告	$\stackrel{\sim}{1}$
	$\left\lvert\, \begin{gathered} \text { ה } \end{gathered}\right.$		$\stackrel{\text { ¢ }}{\substack{\text { í } \\ i}}$
	in in	芥芥告	
	$\stackrel{1}{1}$		$\stackrel{\sim}{1}$
	$\underset{\sim}{n} \underset{\sim}{n}$		－

\begin{tabular}{|c|}
\hline Hours \& Mid． \& 1 \& 2 \& 3 \& 4 \& 5 \& 6 \& 7 \& 8 \& $\cdots 9$ \& 10 \& 11 \& Yoon \& 13 \& 11 \& 15 \& 16 \& 17 \& 18 \& 19 \& 20 \& 21 \& 22 \& 23 \& Mid． \& 1 eur

\hline \multirow[t]{6}{*}{$$
\stackrel{\text { 贵 }}{=}\left\{\begin{array}{l}
\text { Jan. } \\
\text { Feb. } \\
\text { Mar. } \\
\text { Oct. } \\
\text { Nor } \\
\text { Doc. }
\end{array}\right.
$$} \& ${ }_{9}^{\gamma}$ \& $\stackrel{7}{914}$ \& $\stackrel{\gamma}{9} 13$ \& $\stackrel{\gamma}{9} 9$ \& $\stackrel{\gamma}{7}{ }_{9}$ \& r
914

9 \& $\stackrel{\gamma}{916}$ \& $\stackrel{\gamma}{9} 9$ \& $\stackrel{\gamma}{9} 1$ \& $\stackrel{\gamma}{9} 9$ \& $\stackrel{\gamma}{89}$ \& ${ }_{884}$ \& $\stackrel{\gamma}{886}$ \& ${ }_{8}^{\gamma} 81$ \& $\stackrel{\gamma}{897}$ \& ${ }_{901}^{2}$ \& $\stackrel{\gamma}{9} 9$ \& ${ }_{904}^{\gamma}$ \& $\stackrel{\gamma}{906}$ \& $\stackrel{\gamma}{9} 10$ \& ${ }_{9}^{\gamma} 10$ \& $\stackrel{r}{910}$ \& ${ }_{9}^{\gamma} 13$ \& $\stackrel{r}{13}$ \& $\stackrel{\gamma}{15}$ \& ${ }_{9}^{\gamma}$

\hline \& $91!$ \& 920 \& ！ 21 \& 920 \& 9\％0 \& 919 \& 920 \& 921 \& 9 ± 0 \& 916 \& ${ }_{907}$ \& 899 \& 898 \& ${ }_{8}^{897}$ \& 8！ \& 902 \& ${ }_{906}$ \& \& 9 \& ${ }_{9} 915$ \& 910
915 \& 910 \& 113
9 \& ${ }_{918}^{913}$ \& 915 \& 906
913

\hline \& 926 \& 928 \& $9: 7$ \& ：26 \& 927 \& 9\％7 \& 930 \& 929 \& 923 \& 914 \& 904 \& 893 \& s59 \& 891 \& 899 \& 909 \& 912 \& 914 \& 917 \& 919 \& 920 \& 921 \& 923 \& 925 \& 927 \& 913
916

\hline \& 952， \& 95． \& 452 \& 95.2 \& 953 \& 95．4 \& 957 \& 955 \& $9+7$ \& 938 \& 928 \& 924 \& 925 \& 923 \& 926 \& 928 \& 932 \& 936 \& 941 \& $9+4$ \& 946 \& 947 \& 918 \& 952 \& 952 \& $9+2$

\hline \& 9．52 \& 45 \& 952 \& 9.51 \& 952 \& 9.3 \& 95.3 \& 955 \& 954 \& 95 \& 950 \& 950 \& 946 \& $9{ }^{\text {¢ }}$ \& $93 \overline{3}$ \& 934 \& 935 \& 938 \& 944 \& ${ }_{9}^{9} 96$ \& $9+7$ \& 997 \& 950 \& 951 \& 952 \& $9+2$
947

\hline \& 95. \& 95 \& 956 \& 954 \& 955 \& 956 \& 956 \& 953 \& 954 \& 955 \& 956 \& 935 \& （51） \& 943 \& 933 \& 932 \& 937 \& 940 \& $9+5$ \& 949 \& 950 \& 9 O \& 951 \& 95 \& 95 \& 947
950

\hline Meads \& 93； \& 937 \& 937 \& 936 \& 937 \& 937 \& 939 \& ！38 \& 9935 \& 930 \& 923 \& 914 \& 915 \& 914 \& 914 \& 918 \& 021 \& 923 \& 927 \& 931 \& 931 \& 932 \& 034 \& 935 \& 937 \& 929

\hline \multirow[t]{7}{*}{} \& 931 \& ${ }^{931}$ \& 9：31 \& 931 \& 931 \& 932 \& 936 \& 935 \& 937 \& 917 \& 910 \& 003 \& 899 \& 902 \& 908 \& 916 \& 920 \& \& 921 \& \& 925 \& \& \& \& \&

\hline \& 938 \& 938 \& 939 \& 938 \& 939 \& 940 \& 943 \& $9+2$ \& ！36 \& 927 \& 916 \& 912 \& 909 \& 911 \& 914 \& 919 \& 925 \& 928 \& 929 \& ${ }_{93}{ }^{\text {a }}$ \& ${ }_{932}$ \& 935 \& ${ }_{9} 929$ \& 937 \& 939 \& $9 \% 2$
930
930

\hline \& 94 \& 9 ± 4 \& 94 \& ${ }^{9+6}$ \& 944 \& 946 \& 95\％ \& 954 \& 951 \& 942 \& 935 \& 9% \& 918 \& 918 \& 920 \& 923 \& 928 \& 933 \& 937 \& 936 \& 938 \& 940 \& 942 \& $9+3$ \& 944 \& 938
938

\hline \& $9+1$ \& $9+2$ \& 042 \& 942 \& 943 \& 944 \& 949 \& 946 \& 940 \& 931 \& 924 \& 91； \& \& 912 \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& 950 \& 9.1 \& 90 \& 951 \& 951 \& $9 \vdots 2$ \& 958 \& 451 \& 937 \& 926 \& 917 \& 911 \& 913 \& 915 \& ${ }_{917} 915$ \& 920 \& ${ }_{9}^{925}$ \& 930 \& 933 \& 93.3 \& 936 \& 918 \& 940 \& $9+1$ \& 942 \& 933

\hline \& 9.7 \& 9.7 \& 9：9 \& 958 \& 458 \& 960 \& 966 \& $95{ }^{5}$ \& 9.1 \& 928 \& 919 \& 910 \& 910 \& 917 \& 92% \& \& 930
936 \& 934

940 \& | 938 |
| :--- |
| 944 | \& ${ }_{9}^{939}$ \& ${ }^{940}$ \& $99+$ \& $9+6$ \& 947 \& 949 \& 937

\hline \& $9+4$ \& 944 \& 914 \& 944 \& $9+4$ \& 946 \& 951 \& 9.8 \& 939 \& 929 \& 9.2 \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& \& \& \& \& \& \& \& \& 939 \& 929 \& 920 \& 91.3 \& 910 \& 913 \& 917 \& 922 \& 927 \& 931 \& 934 \& 935 \& 937 \& 939 \& 941 \& $9+3$ \& 944 \& 934

\hline
\end{tabular}

Diurnal Inequality of the Vertical Force at Kodaikanal in 1917，deduced from the above Table．

$\begin{array}{cc} \operatorname{cosing} \\ ++7 & 00+t \\ +++ \end{array}$	${ }_{+}^{+}$		$\stackrel{+}{+}$
	$\stackrel{+}{+}$		\square
	\cdots	$\begin{array}{ll}\text {－otroly } \\ +++ & ++\end{array}$	＇－
$\begin{gathered} +\infty=0 \\ +++ \\ +\infty \end{gathered}$	$\stackrel{+}{+}$	$\begin{array}{ll}\text { arat } & +1-x \\ +++ & +++\end{array}$	$\stackrel{+}{+}$
边	$\stackrel{\sim}{*}$	$\begin{array}{ll}\text { ¢aso } & \text { one } \\ ++ & +++\end{array}$	$\stackrel{+}{+}$
	$\stackrel{+}{+}$	$\begin{array}{ll}-=01 & \text { Onot } \\ +1 & ++\end{array}$	－
$\begin{array}{r} =0-2 m i n \\ 1+111 \end{array}$	$\stackrel{\sim}{i}$	$\begin{array}{ll} \hline 7-- & =-7 \\ 1 & 1 \\ 1 & ++ \end{array}$	$=$
and 000 111 and	0	$\left.\begin{array}{cccc} \infty & \cdots 1 & \therefore & \infty \\ 1 & 1 & 1 & 1 \end{array} \right\rvert\,$	$\stackrel{\square}{1}$
	$\begin{aligned} & x \\ & i \end{aligned}$	$\begin{array}{lll} \because 10 & \infty & \infty \\ 111 & 1 & 1 \end{array}$	$\stackrel{\text { i }}{ }$
$\therefore \stackrel{10}{10}=\stackrel{\#}{*}$	7	$0=\frac{90}{9} 10 \times$	$\stackrel{7}{7}$
	\because		$\stackrel{\sim}{1}$
	12		\cdots
	$\stackrel{\underset{1}{7}}{\prime}$		$\stackrel{\square}{i}$
	$\underset{1}{1}$	$9 \div 0 \text { に等 }$	$\stackrel{\text { N }}{\text { i }}$
	$\left\lvert\, \begin{aligned} & 0 \\ & 1 \end{aligned}\right.$		$\underset{1}{4}$
$\begin{array}{cc} \begin{array}{c} +\infty \\ \hline \end{array}+1 & +\infty+ \\ 1+1 & 1++ \end{array}$	$+$		\cdots
	$\begin{aligned} & \because= \\ & + \end{aligned}$	$\begin{array}{ll} 1000 & \operatorname{los} \\ +++1 \end{array}$	\cdots
$\left\lvert\, \begin{array}{cc} \lambda \infty \infty & \infty \infty \infty \\ +++ & +++ \end{array}\right.$	$\begin{gathered} \infty \\ + \\ + \end{gathered}$		$\stackrel{+}{+}$
	$\begin{aligned} & 9 \\ & i \\ & i \end{aligned}$		$\stackrel{+}{7}+$
	$\begin{aligned} & \infty \\ & + \\ & + \end{aligned}$		$\stackrel{\text { 1ㅏㄴ }}{+}$
	$\begin{aligned} & \infty \\ & + \\ & + \end{aligned}$	$\begin{array}{ll} 0.000 & 0.0 \\ +++ & +++ \end{array}$	$\stackrel{3}{7}$
	$\begin{aligned} & 1- \\ & + \end{aligned}$		$\stackrel{\square}{7}$
$\begin{aligned} & \therefore-\infty \\ &++++\infty \\ &+++ \end{aligned}$	∞	$\begin{array}{ll} \hline \operatorname{cosen} & \sigma \underline{m} 9 \\ +++ & ++ \end{array}$	$\stackrel{+}{+}$
	$\stackrel{+}{+}$	$\begin{array}{ll}0000 & \text { Эざさ } \\ +++ \\ +++\end{array}$	$\stackrel{+}{+}$
$\begin{aligned} &+\infty=9 \\ &++++\infty++ \end{aligned}$	$\underset{~}{*}$		$\stackrel{\square}{\vdots}$
	号		䍖

Hourly Means of the Dip at Kodaikanal in 1917，determinadi from all available days．Dip $=\mathbf{N} .4^{\circ}+$ tabular quantity

8		$\begin{array}{\|c} \infty \\ \stackrel{\sim}{0} \\ \dot{\sim} \end{array}$	N No	$\stackrel{\infty}{\text { in }}$
戒		$\underset{\sim}{\underset{N}{*}}$	太冬洜	\cdots
\％		$\begin{aligned} & \hline \stackrel{y}{*} \\ & i \end{aligned}$	采央果	$\stackrel{\sim}{\infty}$
ล	呺め＊	$\underset{太}{ }$		－
न	$\begin{aligned} & \dot{\infty} \\ & \hline \dot{\sim} \end{aligned}$	※	 	－
ล		$\stackrel{N}{N}$	云罢思	$\stackrel{\sim}{\square}$
¢	$$	$\underset{\underset{N}{\dot{N}}}{ }$	＊	过
\pm		$\begin{array}{l\|l} x \\ \vdots \\ \vdots \end{array}$	$\stackrel{\infty}{-}$	＋
\pm		\％		－
$\stackrel{\square}{\bullet}$		$\overrightarrow{\dot{\otimes}}$	8	$\stackrel{\sim}{\circ}$
\pm	स \vec{N}	$$	号䀎等	$\overline{\text { ¢ }}$
\pm		$\stackrel{\square}{8}$		－
\pm		$\begin{aligned} & n \\ & a \\ & a \end{aligned}$		－
		is		$\stackrel{1}{1}$
$=$		$\stackrel{r}{i}$		$\stackrel{\infty}{*}$
$\stackrel{\square}{-}$		宗	＋	－
\bigcirc	तों	ฝิ	※边会	－
∞	－品察宗 我另为	\therefore	足会牢 気穴云	$\stackrel{\rightharpoonup}{*}$
$1-$		\because	is	$\stackrel{\circ}{\dot{\infty}}$
\cdots	｜官家客	0		$\stackrel{\ominus}{i}$
\bigcirc	｜	-		通
\rightarrow		$\underset{\sim}{-}$		＋
∞		in		＊
\sim		$\stackrel{+}{-}$		$\stackrel{+}{\square}$
－		点		－
\cdots		－		$\stackrel{\infty}{\infty}$
国		景		

Diurnal Inequality of the Dip at Kodaikanal in 1917，deduced from the abore Table．

	$\begin{aligned} & \infty \\ & 0 \\ & + \end{aligned}$		9 + +
$\begin{array}{ll} \text { Q10 } & -10+ \\ 00-1 & -1 \\ 0+t \end{array}$	$\stackrel{+}{j}$	$\begin{array}{ll} 0005 & 0 .+4 \\ \dot{O} \dot{O} & \dot{0} \dot{-1} \\ +++ & ++ \end{array}$	+ + + +
$\begin{array}{cc} 10 \sim \infty & \text { - } \\ 0 \dot{0} \\ +++ & +++ \end{array}$	$\begin{aligned} & 0 \\ & \dot{0} \\ & + \end{aligned}$	$\begin{array}{ll} \infty \infty & \infty \\ \dot{0} 0 & \infty \\ ++ & 0 \\ +1 & +1 \\ +1 \end{array}$	+ 0 0 +
$\begin{array}{ll} \infty+0 & 0 N 0 \\ 000 & 0 \\ 0 & 0 \\ + & + \\ + \end{array}$	$\begin{aligned} & + \\ & \dot{0} \\ & + \end{aligned}$	$\begin{array}{ll} 004 & 009 \\ \dot{0} \dot{=} & 0 \dot{0} \\ ++t & ++ \end{array}$	\bullet 0 + +
$\begin{array}{ll} N+10 & 10-9 \\ \dot{E} \dot{0} & 0 \dot{0} \\ +++ & ++ \end{array}$	$\begin{aligned} & \infty \\ & 0 \\ & + \end{aligned}$		+ + + + +
$\begin{array}{ll} \because+\dot{1}+\infty & m \\ \dot{0} \dot{0} & \vdots 0 \\ ++t & + \end{array}$	$\left[\begin{array}{l} \mathbf{N} \\ \dot{0} \\ \mathbf{t} \end{array}\right.$	$\begin{array}{ll} \text { NNO } & -1+10 \\ \dot{0} 0 & 0-0 \\ ++ & ++t \end{array}$	N + + +
$\begin{array}{rr} N O- \\ \dot{0} \dot{O} \dot{0} & \dot{0} 0 \\ 1 & 1 \end{array}$	$\begin{aligned} & \overrightarrow{0} \\ & 1 \end{aligned}$	$\begin{array}{ll} 000 & -N+ \\ \vdots \dot{O} 0 & 0 \dot{0} \dot{0} \\ & +++ \end{array}$	$\stackrel{\rightharpoonup}{\dot{\circ}}$
	10	$\begin{array}{llllll} N & - & 0 & N & N & 0 \\ 0 & \dot{O} & \dot{O} \dot{O} & \dot{O} \\ 1 & 1 & 1 & 1 & 1 & 1 \end{array}$	\％
$\begin{array}{cccc} +6 & 0 & 0 & 0 \\ -1 & 0 \\ \hline 1 & 0 & 1 & 1 \\ 1 & 1 & 1 \end{array}$	$\stackrel{\infty}{\dot{c}}$	$\begin{array}{lll} N+0 & -0 & 0 \\ \dot{0} \underset{=}{0} & \stackrel{0}{0} 0 \\ 1 & 1 & 1 \end{array}$	$\stackrel{0}{0}$
$\begin{array}{cccc} 1 & 0 & 0 & 4 \\ 0-0 & -1 & -1 & 1 \\ 1 & 1 & 1 & 1 \end{array}$	\vec{i}	$\begin{array}{lllll} \because 0 & 0 & 0 & 0 & - \\ 0 & 1 & 1 & 1 & 1 \end{array}$	$\stackrel{\stackrel{1}{4}}{\stackrel{1}{1}}$
$\begin{array}{rrr} \therefore & 0 & 0 \\ \hdashline-1 & -1 & 1 \\ \hdashline 111 \end{array}$	$\stackrel{\square}{\sim}$		$\stackrel{\square}{1}$
$\begin{array}{cccc} \infty & 0 & -\infty & \infty \\ -\operatorname{in} & \text { is } & \dot{0} \\ 11 & 1 & 1 \end{array}$	$\stackrel{5}{1}$		$\stackrel{\sim}{i}$
$\begin{array}{cccccc} +\infty & \infty & - & + & n \\ -1 & \infty & 2 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{array}$	$\stackrel{1}{7}$	0 0 0 0 0 0 0 1 1 1 1 1	－
$\begin{array}{cccc} \infty & 0 & 0 & 0 \\ -\infty & \text { N } \\ 111 & 11+ \\ 11 & 1 \end{array}$	$\begin{gathered} 40 \\ 7 \\ 1 \end{gathered}$		18 1 1
$\begin{array}{cccc} \approx & 0 & 1 & \infty \\ \hdashline- & -1 & \vdots \\ 1 & 1 & 1 & 0 \\ 1 & 1 \end{array}$	\bigcirc	$\therefore 1-000 \infty$	$\stackrel{\square}{\square}$
$\begin{array}{ll} 0 N 0 & \infty N+ \\ 000 & 000 \\ 1+1 & 1+t \end{array}$	3 0 1	$\begin{array}{llll} 0.10 & +1 & 1 \\ 0 & 0 & 0 & -1 \\ 11 & 1 & 1 \end{array}$	2
$\begin{array}{rl} \pi 50 & 0 \sim+ \\ -00 & \dot{0} \dot{0} \\ +++ & ++ \end{array}$	$\begin{aligned} & + \\ & \dot{0} \\ & + \end{aligned}$	$\begin{array}{lll} N 0 \sim & 0 & 0 \\ \dot{0} \dot{0} \dot{1} & \dot{0} \dot{0} \\ +++ & + & 1 \end{array}$	+ + + +
	∞ 0 + +		$\stackrel{\square}{+}$
	+ + +	$\begin{array}{ll} +\infty-1 & 0-\infty \\ -+\cdots & +N+4 \\ +++ & +++ \end{array}$	$\stackrel{+}{\square}$
	∞ 0 + +	$\begin{array}{ll} 0-0 & -\infty \\ -1+0 & +\infty \\ ++ \end{array}$	$\stackrel{\sim}{\stackrel{1}{+}}$
$\begin{array}{rr} \infty \infty-\infty & -\infty \\ \dot{0} \dot{-} & \dot{\theta} \\ ++ & +++ \end{array}$	$\begin{aligned} & \infty \\ & 0 \\ & + \end{aligned}$	$\begin{array}{ll} 005 & 0100 \\ 0+0 & +4+1 \\ +++ & +1 \end{array}$	$\stackrel{+}{\square}$
	$\begin{aligned} & \infty \\ & \dot{0} \\ & + \end{aligned}$		$\stackrel{\rightharpoonup}{2}$
$\begin{array}{ll} 00 N & 00 t \\ 0 \dot{O} \dot{-1} & -0 \dot{0} \\ +++ & ++ \end{array}$	$\begin{aligned} & \infty \\ & \dot{0} \\ & + \end{aligned}$	$\begin{array}{ll} 00 t & 9+1 \\ 0 \dot{4}+ & i+t \end{array}$	$\stackrel{-}{+}$
$\begin{aligned} & 000 \\ & \dot{0} \dot{0}=0 \\ & ++t+t \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & + \\ & \hline \end{aligned}$		\pm
	$\begin{aligned} & 0 \\ & \dot{0} \\ & + \end{aligned}$	$\begin{array}{ll} 0.00 & 0+10 \\ 000 & 0-2 \\ +++ & +++ \end{array}$	$\stackrel{\circ}{+}$

By Cofonel G. P. Lenox Conyngham, R.E., F. R.S.

Perbonnel.

Imperial Officers.
Major E.A. Tandy, R. E., in oharge to 11th October 1917.
Major E.T. Rich, C.I.E., R.E., in charge
from 14th January to 5 th March 1918.
Major H. McC. Cowie, R.E., in charge from 6th March to 5th Auguat 1918. Captain W.E. Perry, M.O., R.E., in charge from 6th August to 30th Dept. 1918.

Provincial Officer.
Mr. E.C.J. Bond, in charge
from 12th Oct, 1917 to 131lı Jan. 1918.
Lower Subordinate Service.
2 Compnters, de.

No work was undertaken by this Party as a Party; the officers and establishment from time to time posted to it for administrative purposes were employed on miscellaneous work.

The Party remained at Head Quarters and did not take the field.

THE COMPUTING OFFICE.

By Major H. McC. Cowie, R.E.

Perbonnel.

Imperial Officer.
Major H. MoO. Oowie, R.E. in charge.
Provincial Officer.
Mr. Henuman Prasad.
Upper Subardinato Service.
Mr. K.K. Das, B.A., from lat June, 1918.
Computing Office.
Rai Sahib Ishen Chandra Dera, B.A., and 11 Computers; \downarrow Computers attached (4 Computers from field parties, 3 of them worked only for a portion of the year in Computing Office) and 7 book-binders.

Printing Offee.

Mr. Sarat Kumar Mukerji, Sub-Asett. Supdt. 21 Compositors \& 4 Printers.

Workshops.

1 Head Artificer, fitters and carponters.

Adjustment of Triangulation.-During the year under review the adjustment of the Akha Triangulation and the pendent portion of the Assam Valley Series was carried out. The secondary stations and intersected points of the following Geodetic Series were also adjusted :-Assam Longitudinal, Assam Valley, Nāga Hills, Kohīma and Cāchār, Manipur Longitudinal and Meridional, Mandalay Longitudinal and Meridional, and Gāro, Khāsi and Jaintiā Hills.

Levelling.-The dynamic and orthometric heights of new bench-marks between Meerut and Bareilly in the old line No. 64, relevelled in 1914-15, were computed and the new work adjusted to the values of the terminal bench-marks and the G.'T. Tower Stations at Sirsa and Fatehganj. The adjustment was effected in four sections, viz, (1) Meerut to Sirsa, (2) Sirsa to Fatehganj, (3) Fatehganj to Bareilly and (4) B.M. 78/53 L to Bhatauli. In assigning new values of height to the old benchmarks use was made of the formula given on page 61 of the Records of the Survey of India, Vol. XI, 1916-17.

As was forecast in last year's report, the republication of the Burma heights in terms of the new mean-sea-level datum at Amherst was accomplished. A new edition of the Burma Pamphlets giving the revised heights has now been completed.

Miscellaneous Computations.-Computations were carried out in connection with Part II of the Auxiliary Tables of the Survey of India, 5th edition, 1918 and in connection with the investigation of Isostasy in India.

Triangulation Pamphlets.-Last year's progress was maintained in compiling data for the triangulation pamphlets, specially for trans-frontier areas. 115 degree sheets were compiled and compared during the year.

Printing Section.-'The following were printed in the course of the year:-Vol. XI of the Records of the Survey of India 19]6-17, Triangulation Pamphlets for 88 degree sheets (G. T. data only), Delhi Triangulation pamphlet, Bombay Island Triangulation pamphlet, Levelling pamphlets for sheets Nos. 8t, 85 and 92 and Tide Tables for the Port of Basrah. The printing of Professional Paper No. 16 and Part II of the Auxiliary Tables of the Survey of India, 5th edition, was completed. In addlition to these a pamphlet on the transliteration of place names was published.

In the Book-binding section the work dealt with comprised 4750 copies of triangulation aud levelling pamphlets, 400 copies of Professional Paper No. 16, 406 copies of Tide Tables for the Port of Basrah, 500 angle books and 770 volumes of miscellaneous publications. The binding of 350 copies of the Records of the Survey of India Vol. XI, 1916-17, is in progress and will be shortly completed.

Workshops.-The work of this section consisted principally in the construction of a number of racks for the Computing Office and the Forest Map Office, the alteration of signals and the repairing of instruments for the Sind Sagar. Party and No. 3 Party and in the repairing and cleaning of instruments for issue to the Persian Survey Detachments.

Requisitions.- 85 requisitions for data were received from departmental and nondepartmental officials. In some cases these requisitions were met by the supply of pristed pablications; in others it was necessary to extract the required information from manuscript recorde.

Miscellaneous.-The Omori Seismograph was in operation throughout the year and the unual meteorological observations were taken. A satisfactory record was obtained of the destructive earthquake which occurred on 8th July 1918 in Assam and was sent to the Director of the Geological Survey in compliance with his request.

The photo.-helio. observatory continued its work as in past years.
The following statements show the earthquakes recorded and the number of days on which Solar photographs were taken:-

Earthquakes recorded during 1917-18.

	Month and Date	Time of beginning (correoted)		Duration	Distance of Epicentre in miles		Intessity
		Dchra	$\left\|\begin{array}{\|c\|c\|} \operatorname{Simln} \\ (\text { from } W \cdot R .) \end{array}\right\|$		Dehre	$\underset{(\text { fromW.R. })}{\text { Simla }}$	
		Hrs. Mts.	Hrs. Mts.	Mts.			
1	31-1-18*	$2 \quad 58$	$2 \quad 57$	27	2800	3000	moderate
2	14-2-18	114.5	1145	86	2730	3000	do.
3	25-3-18	5 52	5 54	30	1540	1000	slight
4	13-4-18	$6 \quad 291$	$6 \quad 30$	85	3570	1500	do.
5	4-7-18	$1233 \frac{1}{2}$	$12 \quad 33$	70	4550	4000	moderate
6	8-7-18	1554.	$15 \quad 55$	110	840	1000	great (Absum earth. quale)
7	15-8-18	$11 \quad 8 \frac{1}{2}$		67	3430		severe
	do. $\}$	$17 \quad 56$	$17 \quad 57$	220	3640	2500	do.
8	7-9-18	2257		260	4410	\ldots	do.
9	12-9-18	1511	$15 \quad 11$	18	400	400	slight

Note:-No earthquakes were recorded during the months of October, November and December 1917.

Solar Photography.

Statement showing the number of days on which Solar Photographs were taken
during the year 1917-18.

Month,	$\begin{aligned} & \text { No. nf } \\ & \text { days. } \end{aligned}$	$8^{\prime \prime}$ Negts.		In/ Nerts.		No. of duys on which Sull was invisible.	Month.	No. of days.	$8^{\prime \prime}$ Negts.		12" Negts.		No. of days on which Sun was invisible.
		Good.	Bnd.	(Good.	Bad.				Good.	Bad,	Good.	Baci.	
October 1917	26	47	...	1	\cdots	5	April 1918	30	52	...	2	\cdots	\ldots
November ,	30	56	\ldots	3	\cdots	.	May \quad,	$3!$	57	\cdots	4	...	\cdots
December ,"	30	52	...	1	\ldots	1	June \quad,	29	40	\cdots	1	\cdots	1
Januery 1918	30	54	\ldots	2	\ldots	1	July	30)	47	\ldots	1	\cdots	1
Fobruary "	26	48	\ldots	3	\cdots	2	Augual. ",	27	44	\cdots	1	\cdots	4
March ",	29	52	\cdots	2	...	2	September ",	30	5t		2	\cdots	\ldots
				1			Totals ...	348	612	\cdots	23	..	17

PART III.-SPECIAL REPORTS.

PHOTO.-LITHO. OFFICE, CALCUTTA.

By Major F. J. M King, R. E.

The year 1917-18 has again witnessed a very large increase in the demand for maps by the military authorities. The greater part of this demand consisted of maps required for mobilisation purposes and entailed the concentration of all our resources on it for some months and the employment of constant overtime.

As a result of the war the Goverament of India experieuced difficulty in obtaining supplies of Treasury Bills and Promissory Notes from England, and this office was consequently called upon to print large numbers of complete Treasury Bills and of the background design of the Promissory Notes, the type matter on the latter being subsequently surprinted by the Superintendent, Government Printing. These Promissory Notes were used as serip for the Second Indian War Loan.

The Powder Process.-In the Records Volume for 1916-17 it was mentioned that the Powder Process would probably be taken into use again in the office. This process was formerly used here for the preparatinn of reversed negatives which were required in connection with the preparation of "dust-on" blue prints for hill shading before the present method of making these blue prints was intreduced ; it has now been taken into use again but for quite a different purpose.

Space having been found by a rearrangement of the glass and negative storage accommodation, a new section was formed to work this process which is now used for the preparation of all the neratives of the line work on our modern coloured maps. The Powder Process enables any number of reversed copies of a negative to be made at a trifling cost.

Until this new section was formed the Negative Section had to make four negatives of the outline original and one of the hill original of every modern coloured map, whereas the Negative Section now has to make only one negative of the outline and one of the hills, these negatives being made "direct", that is without the use of a prism on the lens of the camera. These " direct" negatives are given a full exposure in the camera and developed ; the intensification subsequent to development is, however, not carried so far as was formerly the case, a comparatively "thin " negative being all that is required, as any reguired amount of density can be obtained when making the reversed duplicates by the Powder Process, and overintensification of the camera negative causes fine work to close up and become broken. The small amount of intensification given enables all the minute details of the finest drawing to be pressrved. The direct outline and hill negatives are then sent down to the Powder Process Section where four reversed copies are made of the outline negative and one of the hills and it is on these reversed duplicates that the duffing for colours is subsequently done.

Though the Powder Process itself is a very old one it is only lately that its ${ }^{*}$ possibilities in connection with our work were realised, and, as it is a process which is so little known, a description of it is given below under "Methods and Processes". Its introduction has improved the quality of our maps, considerably lightened the work of the Negative Section which was rapidly hecoming congested, and reduced the cost of reproduction of coloured maps. Without it it would have been impossible to cope with all the demands for reprints of our maps for mobilisation purposes in anything like as short a time as that in which the work was actually carried out.

By this means a very notable economy has also been effected. The Process was taken into use in Febrinary 1918. The average cost of negatives from October Ist 1917 to January 31 st 1918 works out at Rs. 1-2-9 per 100 square inches, while from February lst 1918 to September 30th 1918 the average cost comes to only Its. 0-10-8 or a saving of Rs. 0-8-1 per 100 square inches. The total area of negatives made during the year under report comes to $2,589,557$ square inches, so that the saving on a whole year's working amounts to about

Rs. 12,000 . This process has also been found very useful for preparing negatives for the layer plates of our layered maps. Instead of making in the camera the whole set of negatives for the layers of a map, only one is now made, as many duplicates of it as are necessary being made by the Powder Process.

It has been stated above that the introduction of the Powder Process entails using the camera "direct", i.e., with no prism on the lens. Hitherto our cameras have been arrauged for use with prisms and it has now been necessary to alter two of them for direct use. Our largest camera has not as yet been so altered as in this case some arrangement will have to be made whereby this camera can be used either direct or with a prism, as much of our largest work is in one colour only in which case no Powder Process negative is made and the camera negative is the one used from which to make the helio. The alterations necessary to this large camera are not very great but it has been thought inadvisalle to ask the Mathematical Instrument Office to undertake the work in war time when they are so busy with munition work. The alterations will be undertaken as soon as the Mathematical Instrument Office can spare the time to do them.

Our largest camera is the only one which will carry our best lens-a large one by Zeiss: we are therefore at present unable to use our best lens on our highest class of work which is the reproduction of our modern maps in colours.

METHODS AND PROCESSES.

I. The Powder Process.

1. By means of the Powder Process it is possible to make any number of reversed duplicates of a negative,-it is a means of making a negative from a negative.
2. Sensitising.-A clean piece of glass is coated with the following solution:-

Glucose	30 gms.
Gelatine	4 gms.
Gum arabic	8 gms.
Ammonium Bichromate	$\mathbf{1 5}$ gms.
Water	240 c.c.

The coating of the glass is carried out as follows:-The glass, which should be thoroughly clean, is laid on a flat table and a small quantity of the solution is poured on to the centre of the glass and distributed over its surface by means of a rubber roller. Only sufficient solution should be poured on as will cover the glass with a very thin film when it is spread out by the action of the roller. The best type of roller to use is of the type sold for use with the "Cyclostyle" duplicating apparatus. The rolling is continued both backwards and forwards and across until the glass is covered with a thin even film and the solution begins to get tacky when the rolling should be stopped. Most of the old text books which deal with this process recommend flowing the solution over the glase and draining it, or flowing it on and whirling it. Both these methods were tried here but it was always found that the resulting negatives were a mass of pinholes; coating with a rubber roller obviates this great defect. The coating of the glass up to this stage can be done safely in daylight as the solution is not sensitive to light until it is dry.
3. Drying.-The coated glass is now dried in a specially constructed light-tight drying box, the drying being effected by means of heat.
4. Exposing. - When thoroughly dry the sensitised glass is removed from the dyying box in a yellow light and placed, film to film, with the negative to be copied in a pneumatic printing frame, and an exposure made. The exposure should be given, if possible, in direct sunlight in order to obtain the sharpest results. The length of exposure necessary in Calcutta is about $1 \frac{1}{2}$ minutes at mid-day in strong sunlight, longer exposures of course being necessary when the light is weaker or the sun is obscured.
5. Developing.-The printing frame is now taken into the developing room, the exposed glass removed from the frame in a yellow light and allowed to stand exposed to the damp atmosphere of the room for a few minutes in order that it may absorb moisture from the air. If this process were to be worked in a very dry climate it might be necessary to proride for this purpose a special damping box in which the air could be kept more or less laden with moisture by some means. The atmosphere of Calcutta is, however, sufficiently moisture-laden
to render any special arrangement of this sort unnecessary. The glass is now placed, film side up, on the top of a developing box, which consists in the main of an ordinary wooden box with a light inside it and with a thick glass lid, the interior of the bottom and sides of the box being painted white. Fine lamp black powder is then dusted gently over the film side of the exposed glass with a tuft of cotton wool; by means of gentle rubbing the image gradually appears and can be brought to any degree of density required provided the exposure is correct. Over-exposure leads to a difficulty in getting sufficient density of image, while under exposure gives extreme density with a "veiling" or blackening of the lines of the image which should remain clear.
6. Varnishing.-When sufficient density has been obtained the surplus powder is dusted off and the negative is varnished in the same way as is done in the case of ordinary wet plate negatives.
7. Washing out the bichromate.-In some cases the Ammonium Bichromate in the sensitising solution imparts a yellowish tinge to the clear lines. If such is the case, the negative, after development and before varnishing, is exposed to daylight to thoroughly harden the film; it is then thoroughly washed under a tap until the bichromate is dissolved out, thus causing the yellowish tinge to disappear from the clear lines of the image. The negative is then allowed to dry, after which it can be varnished.
8. Explanation of the process.-The two main factors in the sensitising formula are the ammouium bichromate and the glucose. The seositising solution when spread on the glass by the roller and dried by heat is not in a sticky or "tacky" state, but if exposed to damp air it absorbs moisture and becomes sticky. The action of light on the dried film on the other hand destroys that power and so hardens the film that it cannot absorb moisture and become sticky. This light-sensitive film when exposed under a negative will become hardened only on the portions to which the light has access, that is to say, on those parts under the clear lines of the image of the original negative ; the portions under the opaque parts of the original negative on the other hand are not acted on by light and still retain the power of absorbing moisture and so becoming sticky. The development with lamp black is purely mechanical and involves no chemical action. The powder will only stick to those portions which are sticky and have not been hardened by light, and will not adhere to those portions which have been so hardened. The resulting negative is therefore a reversed duplicate of the original negative.

II. Improvements in the preparation of Layfr Plates.

Some developments have been made during the year with a view to simpliffing the preparation of plates for the layer colouring of our maps by the new photographic method which was described in the Records Volume for 1916-17.

The making of half-tone negatives for this purpose is a somewhat complicated business, and there are many factors which require constant attention such as "screen distance", stops, exposure, etc., as any errors in these respects may be the cause of unsatisfactory results.

At Mr. Vandyke's suggestion the special " X " shaped stop, referred to in last year's Records Volume, was replaced by a stop formed of a single slit, the slit sloping at 45 degrees to the horizontal and parallel to one set of lives of the screen. Half the exposure is made with the stop in one position, and the other half with the stop reversed so that the slit is at an angle of 90 degrees to its position during the first half of the exposure. During the first half of the exposure the layer original is on the plan board and single lines at 45 degrees to the horizontal are produced on those portions of the negative corresponding to the white portions of the layer original; the black portions of the layer original produce no action on the negative so that lines are not formed on those parts of the negrative corresponding to the blacks of the layer original. During the second half of the exposure, the stop having been reversed, the layer original is covered over with white paper. Lines crossing the former lines at 90 degrees are thus formed all over the negative. On development, a negative prepared in this fashion will show single lines all over those portions corresponding to the black portions of the layer original and crossed lines all over those portions corresponding to the white portions of the layer original.

The helio plates prepared from negatives prepared in this way were found more satisfactory than those from negatives made with the X stop as the dots forming the lisht tint were large but definitely isolated. The lines forming the dark tint were also moie satisfactory as there is not the same tendency for single line tints to close up in printing as is the case with cross-lined tints.

Mr. Vandyke's next development was the substitution of a single lined screen with lines at 45° to the horizontal for the ordinary half-tone screen. A screen of this sort was ruled in a ruling machine and consisted of fine clear lines cut through an opaque ground which was laid on the glass. This screen is carried in the ordinary screen carrier in the camera but is used without any screen distance-i.e., close up to the plate,-and a large stop is used in the lens, thus entailing a shorter exposure than was the case with the "slit" stop. After the first half of the exposure has been given the dark slide is closed, the screen rotated through 90°, so that the lines run at right angles to their former direction, and the second half of the exposure made, white paper being placed over the original as was done when using the "slit" stop. The elimination of the screen distance renders"this method very simple and the use of a screen with a somewhat coarse ruling makes the subsequent printing much easier.

APPENDIX 1.

(Originally published in the Geographical Journal, March 1918: reprinted by permission of the Royal Geographical Society).

THE PROBLEM OF THE HIMALAYA AND THE GANGETIC TROUGH.

By Dr. A. Moliey Davies.

"The Attraction of the Himalaya Mountains upon the Plumb-line in India."-Major S. G. Burrard, R.E. Survey of India: Professional Paper No. 5. (1901).
"Pendulum Observations in India, 1903-07."-Major G.P. LenoxConyngham, R.E. Survey of India: Professional Paper No. 10. (1908).
"Investigation of the Theory of Isostasy in India."-Major H.L. Crosthwait, R.E. Surver of India : Professional Paper No. 13. (1912).
"On the Origin of the Himalaya Mountains."-Colonel S. G. Burrard, C.S.I., R.E., F.R S. Survey of India : Professional Paper No. 12. (1912).
"Notes on the Relationship of the Himalayas to the Indo-Gangetic Plain and the Indian Peninsula."-H.H. Hayden, C.I.E., F.G.S. Records Geol. Surv. India, 43, 108-167. (1913).
"The Origin of the Himalayan Folding."-Sir Thomas H. Holland, K.C.I.E., A.R.C.S, F.R.S. Geol. Mag., Dec. 5, 10, 167-170. (1913).
"Note in Reply to Mr. Hayden's Paper . . ."-Lieut.-Colonel G. P. Lenox-Conyngham, RE. Records Surv. India, 5, 161-164. (1914).

Presidential Address to section C, Brit. Assoc. (Australian Meeting).-Sir Thomas H. Holland, K CI.E., A.R C.S., D Sc., F.R.S. Geol Mag., Dec. 6, 1, 411-418, 157-461. (1914); and Rep. Brit. Assoc., Australia, 191t; (1915). 344-358.
"On the Effect of the Gangetic Alluvium on the Plumb-line in Northern India."-R D. Oldham, F.R.S. Iroc. Roy. Soc., A, 90, 32-41. (l9] 1).
"On the Origin of the Indo-Gangetic Trough, commonly called the Himalayan Foredeep."-Colonel Sir Sidney Burrard, K.C.S.I., R.E., F.R S. Proc. Roy. Soc., A, 91, 220-238. (1915).
"The Structure of the Himalayas and of the Gangetic Plain, as elucidated by Geodetic Observations in India."-R D Oldham, F.R.S. Mem. Geol. Surv. India, 42, pt. 2, 1-153. (1917).
and other papers.
The literature of the famous Himalayan problem has been enriched in recent years by a series of important papers which need collective notice. Scattered over a wide range of official publications, and demanding for their appreciation an epral knowledge of (ienlogy fud Geodesy, an introduction to their study is required; and it is as such an introluction, rather than as a critical judgment of the problem in its present phase, that this notice is written.

The great alluvial plains of Northem India, which slopee so gently upward from the Ray of Bengal and the Arabian Sea that the indistinct watershed north of Delhi is less than 1000 feet above the sea-level, separate two remions of higher land that are in striking contrast, physically and geologically. To the south, the Peninsula is an almost earthquake-free area of ancient crystalline rocks, freshwater sediments, and immense horizontal sheets of lava. Its qeolosical relationships are with South Africa and Anstralia, fragments of a continent which for long ages remained highly stable and fiee from compressive stress. To the north, the Tibetan platean, the snowy Himalaya, the Lesser Himalaya and the Siwalik Hills form four parallel helts which show evidences of strong transverse compression in late geological periods, the last of them being still the seat of origin of violent earthyuakes. In the two northern belts crystalline rocks are associated with the uplifted deposits of an ancient ocean, while the Siwaliks are composed of serliments like those of the alluvial plains, though slightly older in geological time.

The plains themselves are formed of material brought down by streams from the high ground, especially from the north. On their southern margin the rocks of the peninsula slope gently away beneath them, frequently projecting through them like islands; but on the northern margin the Himalayan rocks plunge abruptly down to unknown depths. What geological structure is hiddeu beneath this northern part of the plains?

When Everest in 1847 finished measuring that part of the Great Arc of India which crosses the plains from the central station of Kalianpur to Kaliana near the foot of the mountains, he found that the latitude of the latter place, as determined by direct astronomical observation, was less by more than 5 seconds of are than the latitude as measured geodetically. This was interpreted as due to the attraction of the Himalayas, which by deflecting the plunb-line falsified the astronomical observations, and Pratt (Phil. Trans., 145 (1855), p. 53) set out to verify this by an elaborate calculation. He came to the disconcerting result that the deviation of the plumb-line ought to be three times as great as it actually was. Airy (Ibid., p. 101) at once pointed out that if the Earth (as then generally believed) had a thin solid crust supported by flotation on a liquid central mass, every protuberance must be support. ell by a downward displacement of the liquid, just as with an iceberg or a floating cork; that therefore there ought to be a defect of gravity beneath a mountain-chain or plateau which would diminish the deflection of the plumb-line caused by the protuberant mass. Pratt, however, rejected the idea of flotation of a thin crust (Phil. Trans., 149 (1859), p. 746), but accepted that of a sub-montane defect of gravity, believing this to be due to deep-seated chemical changes, which actually caused the rising of the surface. He showed also that there was a deflection of the plumb-line towards the ocean at Indian coast-stations, so that there must be an excess of gravity beneath the ocean hollows. To this relation between surface features and deep-seated variations of gravity he epplied the term "compensation".

Here we see a double divergence of view: Pratt for a rigid Earth, Airy for a fluid globe with thin crust ; Pratt for a deep-seated tumefaction (like the rising of dough) as the cause of mountains and plateaux, Airy for their formation by some immense surface accumulation of matter of which a very large part sank into the supporting fluid. Airy indeed expressed no view as to how the accumulation came about, and to complete the double contrast we must go forward to 1881, when Osmond Fisher (' Physics of the Earth's Crust,' pp. 142-150) combined Airy's principle of flotation with the geological principle of mountain origin by tangential compression in his theory of mountain "roots," according to which every upward wrinkle was accompanied by a much larger downward wrinkle displacing the more or less fluid sub-crust.
J. D. Dana ('Manual of Geology') put forward the principle of compensation as evidence for the permanence of oceanic and continental areas through geological time; but otherwise little notice seems to have been taken of it by geologists in their theories of upheaval and mountain formation, until Dutton * in 1889 brought it into prominence and proposed the term Isostasy. This term was scarcely a happy one, since Dutton's great service was that he took a principle which in the hands of geodesists had been simply static, and made it dynamic by introlucing the idea of constant adaptation through geological time. Dutton's paper was a stop-gap, not originally intended for publication, but its effect on geological thought was remarkable.

Isostasy may be defined as a condition of approximate equilibrium in a heterogeneous earth, such that variations in the actual surface from that of the ellipsoid of rotation compensate for (or are compensated by) differences in the density of the crust beneath them. The maintenance of isostasy in face of the geological changes that are known to have taken place in the crust implies sone degree of plasticity in the sub-crust, though it is not necessary to adopt the crude idea of a thin crust on a liquid sub-crust.t "The continents will be floated, so to speak, becanse they are composed of relatively light material ; and, similarly, the floor of the ocean will......be depressed because it is composed of unusually dense material."
"The adjustment of the material towards this condition, which is produced in nature by the streses due to gravity, may be called the isostatic adjustment.......The compensation of the excess of matter at the surface (continents) by the defect of density below, and of the surface defect of matter (oceans) by excess of density below, may be called the isostatic compensation."

[^3]These quotations are from a memoir by Hayford,* who in the early years of the century devised an ingenious modification of the "compartment" method which Pratt had invented for his Himalayan calculations, making it possible by comparatively simple calculations to determine the "topographic deflection" for any station. This may be defined as the deflection of the plumb-line which would be produced by the irregular distribution of the masses corresponding to the known iiregularities of the surface, assuming the non-existence of any isostatic compensation. By the same method may be determined the "correction for isostasy" at any station, that is the correction to be made in the topographic deflection on the assumption that the Earth is in perfect isostatic equilibrium. If the deflection so calculated and corrected does not, agree with the observed deflection (as shown by the difference between the astronomical and geodetic latitudes of a station) the difference is the "residual deflection" (or " anomaly"), and is the measure of the imperfection of isostasy at the station, unless it can be shown to be due in part to imperfect geodesy (for instance, the use of an inexact spheroid as basis).

Isostatic equilibrium is, of course, very far from being real equilibrium. The plumbline is still deflected locally, because the compensating excosses and defects of mass are at unequal distances from it; and there are lateral strains set up in the Earth itself. Elevated areas are not saved from denudation nor seas from sedimentation by compensation in the depths, and the effect of these geological actions as well as of those movements under tangential pressure to which the foling and overthrusting of rock-masses bear witness is to disturb isostasy continually. If, therefore, there is even an apprexination to isostasy in the Earth, it is good evidence that isostatic adjustment has been taking place during the past.

Hayford and his colleagues of the U. S. Coast and Geodetic Survey showed by the smallness of the "residual deflections" that there was approximate isostasy in the United States. The residuals were smallest if isostatic compensation were assumed to be complete at a depth of about 113.7 (afterwards recalculated as 122) km . The mass under any given area, from sea-level down to this depth of complete compensation, is the "supporting column" of that area. Hayford mapped the distribution of residuals, but could find no general explanation of them. Gilbert \dagger pointed out that Hayford assumed a uniform distribution of the compensating defect or excess throughout the supporting column, and calculated that heterogeneity of the column might produce results comparable to the actual residuals, but that variation in the isostatic level would not. Barrell \ddagger came independently to the conclusion that vertical variations of density are a real cause, but not the major cause of anomalies.

Meanwhile much work was being done in India. Burrard (1901) published the results of the previous six years' work in a volume which may well be faken as a classical example of scientific progress by the method of trial and ecror, as first one and then another explanation of the plumb-line anomalies is tried and abandoned. We need only refer to the final result, the chief of which is that a " hidden mountain chain " or region of excessive deusity crosses India, parallel to the Himalayas, and about 400 miles from their southern boundary, from near Calcutta through Kalianpur to near Karachi, and that this masks the effect of the Himalayas on the plumb-line. Another small area of high clensity occurs in the midst of the Punjab alluvium betreen Multan and Lahore.

These results of piumb-line observations were conlimed by Lenox-Conyugham's pendulum observations (1908).

Crosthwait (1912) applied Hayford's methods to India, and showed that there was a far wider divergence from isostasy in India than in the United States. Burrard had divided India into regions according to the direction and amount of the local defections. Ardent believers in isostasy may have hoped that these distinctions would vanish when "correction for isostasy" had been made; but they still persist. Thus in region 1 (Himalayas) all residuals are negative (northward dettection), and all but one have high values, $1: 3^{\prime \prime}$ to $24^{\prime \prime}$. Region $: 2$ (plains at foot of Himalayas) is a region of rapil trausition: there are only four stations, and the reviduals range from $-11^{\prime \prime}$ to $+7^{\prime \prime}$. Regious 3,4 , and 5 (all the rest of the plains, and the peninsula roughly north of the Tropic of Cancer') include 37 stations, of which 34 have positive residuals, the other three having 0,0 , and $-l^{\prime \prime}$ reijectively. Further south, on the other side of the "hidden range" negative valnes again prevail except in the

[^4]extreme south, where there is a transition towards positive.* There is thus evidence of a defect of gravity under the plains and an excess under the northern part of the peninsula, not eccounted for by either topography or isostatic compensation. Crosthwait (anticipating Gilbert's conclusion) suggested that residuals might be due in part to unequal distribution of mass in the "supporting columns." He regarded the less perfect isostasy of India as due to the much greater disturbances of the crust in late geological times, as compared with North America. "The Earth's crust in India is in a process of settling down and may be, comparatively speaking, in a state of strain." On this Barrell \dagger commented that "upheavals cannot exceed the strength of the crust; and in India, therefore, perhaps may be better observed than in the United States the maximum strains which the Earth is competent to endure;" and as a result of his elaborate studies concluded that the Earth's crustal strength is "twenty, fifty, or even a hundred times greater than that advanced in recent years by the leading champions of high isostasy." Thus we see the pendulum of opinion swinging between belief in fluidity and rigidity in the Earth.

Following on Crosthwait's publication, Burrard (1912) propounded his theory of the origin of the Himalayas. He postulates a sub-crust, contracting as it cools and cracking. The sides of the crack (or series of cracks) move apart. The crust overlying the shrinking northern side is compressed by this movement of the sub-crust, the mountain-folds of the Himalayas beng thus produced. The rift is gradually filled with alluvium of low density. Further sbrinkage and cracking canses some of this alluvium to be folded, producing the Siwalik Hills.
'This theory was so contrary to accepted geological ideas that controversy soon rose over it. If the sub-crust is so plastic that complete isostatic compensation may take place within a depth of 7.5 miles, can it be so rigid as to form, under tension, a wide rift to a depth of 20 miles? This is one difficulty, but the direction of thrust that folded the Himalayan rocks is another. It had been generally considered by geologists that the direction of pressure in a folded arca could be judged (1) by the inclination of the axes of asymmetric folds, which appear as though their upper end had been pushed farther than the lower; (\geq) by the relative position of more or less horizontally displaced masses, it being assumed that an overthrust is more easily produced than an underthrust; (3) by the curvature in the trend of the folds in plan, it being assumed that the pressure must have come from the concave side of the are. On all these crrounds the Himalayas are usually regarded as having been subject to a pressure from the north. Suess, who led the way in the broad treatment of mountain systems, regarded the whole of Asia as subject to a push outwards from a centre in Siberia, mountains being thrust up in a series of arcs along the continental margin. The greatest resistance to this outward movement was offered by the rigid peninsula of India, and this dammed back the advancing earth-waves so that they reached the greatest elevation on the Earth. The alluvium of the plains filled up a great downward buckle or trough in front of the main upfold, a "fore-deep" analogous to the Tuscarora deep, in front of the are of Japan. While Suess's detailed views are not universally accepted among geologists, they do express in broad outline the general opinion. Burrard's idea of an elevation of the Himalayas by a northward movement of the sub-crust was therefore a most subversive suggestion. Suess in his latest pronouncement on the Himalayas \ddagger (1909) took small account of isostasy, preferring to treat crust and sub-crust as practically rigid, and suggesting that the great mass of alluvium of low density filling the Indo-Gangetic "fore-deep" was sulficient to account for the gravity anomalies.

An attempt to reconcile the geodetic observations with isostasy was made by Hayden (1913). He showed that by taking variable depths of isostatic compensation for different stations the residuals could be reduced to a series of vanishing points. This pretty statistical card-castle collapsed under the criticism of Lenox Conyngham (1914) who pointed out that the whole of Crosthwait's calculations were based on the assumption of a uniform depth of compensation, and that you could not assume different depths of compensation for the same compartment according to whether you were calculating its effect on this station or that. Lenox Conyngham, however, appears to adopt too rigid an attitude in refusing to admit any variation in the depth of compensation: such a variation is accepted as possible by Hayford, Barrell, and other American investigators.

[^5]Holland (1913) reviewed Burrard's theory not unfavourably, though with caution, briefly pointing out several "geological and physical considerations that debatably seem to fall into line" with it. Chief of these are (1) the existence of numerous tension-faults in the northern part of the peninsula parallel to the supposed rift, and (2) the great depth at which megaseisms (world-shaking earthquakes) originate, which may seem to justify the belief in a very deep-seated rift.

Oldham (1914) made calculations as to the effect on the plumb-line of a mass of low density such as the Gangetic alluvium appears (on geological evidence) to be-assuming it to fill a trough 100 miles wide with depth increasing from 0 on the srouth to about $3 \frac{1}{2}$ miles on the north (with other possible dimensions considered, as a check). He found that the effects were commensurate with the actual Crosthwait residuals. On the other hand such a rift as Burrard seemed to postulate-5 miles wide and 20 miles deep-would give very different figures. Oldham's calculations however were confined to two groups of stations extending for no great distance north and south of the Himalayan margin. He also assumed that the observed meridional deflections were the meridional components of a real deflection at right angles to the trend of the range; and justified this by reference to Dehra Dun, where observations have been taken both in the meridian and prime vertical, and the resultant (residual) deflection is acturlly transverse to the local trend. Unfortunately there is a station, Jalpaiguri, in his second group where also prime vertical observations lave been made, and here the resultant residual (as taken from Crosthwait's map) is $1 \sigma^{\prime \prime}$ in the direction $\mathrm{E} .26^{\circ} \mathrm{S}$, whereas Oldham takes it as $7^{\prime \prime}$ normal to the range, which would be about \mathbf{E}. $68^{\circ} \mathbf{S}$.

Holland (1914) expanded his ideas on the formation of tension-faults in the northern part of the peninsula, remarking that "during the secular subsidence of the northern shoreline of Gondwanaland, accompanied by the slow accumulation of sediment near the shore and the gradual filing away of land above sea-level, there must have been a gradual creep of the crust in a northerly direction," which produced a state of tension and a series of faults parallel to the ancient shore-line (or to the modern Himalaya). He also expressed the opinion "that the break-up of Gondwanaland and the tectonie revolutions that followed show how isostasy can defeat itself in the presence of a sub-crustal magma actually molten or ready to liquefy on local relief of pressure. It is possible that the protracted filing off of Gondwanaland brought nearer the surface what was once the local level of no strain aml its accompanying shell of tension." from these guotations we may infer that he regards the Gangetic trongh rather as the effect of sinking of the crust under tension aceompanicl by the rise of lifuefied sub-crust, than of a tension-rift in a rigid sub-crust as supposel by llurrard.

Burrard (1915) returned to the subject in a paper which is largely taken up with a criticism of the view that the Gangetic trough has been actually produced by the weight of

- the sediment deposited at the foot of the mountains. 'To this he urges several objections, the first of which is absolutely conclusive:-If alluvium of density $2 \cdot 1$ has pressed down a floor of density $2 \cdot 7$ to a depth of 20,000 feet, its upper surface should be far higher than it actually is. There has certainly been very loose thinking on the part of some geologists on the subject of sedi-ment-loarling and isostatic adjustment. There are well-known cases of masses of sediment of enormons thickness (for instance, the Coal Measures) which show evidence throughout of having been deposited in very shallow water. These have been explained by supposing the weight of sediment to force down the substratum persistently to an extent equal to its own thickness; but this is quite impossible unless the yielding zone below, which allows of isostatic adjustment, is exactly eyual in density to each new layer added, and that is precisely what it is not, ex hypothesi, least of all under a depressed area. Similarly with the rising of mountains from isostatic adjustment pari passu with their clenulation. Both processes give an infinite series in geometrical progression with a tinite sunn; they cannot continue at a uniform rate. If therefore any onc holds the view that the Gangetic trough has been proluced by the weight of alluvium that now fills it, he is believing a mathematical impossibility. What is possible is that the loading has helped a depression due to other causes. Even this view may come under another of Burrard's criticisms. He points out that the load of alluvium is not uniformly spread, but is piled up at the points of debouching of the Himalayan rivers into the Plains. The depth of the trough however is not similarly localized, but its deepest part (accorling to Captain Couchman's pendulum observation:) is opposite Nepaul, where the rivers are not the largest. But if the floor on which the sediment has accumulated is a northward extension of the lndian Peninsula, it would itself have an uneven surface, and would be sufficiently rigid to bear the unequal loading by strains in its own substance and transmit it in an equalized form to the yielding sub-crust.

Another interesting point made by Burrard is the analogy between the Gangetic trough and the Tuscarora Deep (off Japan), which has sunk to a depth of 27,500 feet without the help of any load of sediment. This argument would be more convincing if there were better evidence that the Gangetic trough had once been occupied by the sea; but the upraised Siwalik strata that were first deposited in it include no marine sediments, and the chief evidence has hitherto been the existence of closely allied species of freshwater dolphins in the lower reaches of both Indus and Ganges. Burrard refers to the "swatches of no ground" or very deep channels off the mouths of Indus and Ganges as submarine continuations of the rift. That in the Arabian Sea is in line with the Indus depression, but that in the Bay of Beogal is rather parallel to the Gangetic trough than a continuation of it.

In the further part of his paper Burrard explains more fully his own theory, and by not insisting on a depth of 20 miles and width of \tilde{j} for his rift, brings the latter more into harmony with what geologists would regard as probable. He incorporates a note by de Graaff Hunter on the conditions of a cooling earth, in which it is argued that there must be a zone or shell contracting more than the zones either above or below it, and therefore in a state of tension : the cracking of this zone and consequent adjustment to it of the crust above are regarded as causes of deformation in the latter. The criticisms which the geologist would make on this argument would be, firstly, that variations in physical conditions, such as density and, above all, thermal conductivity, of different zones of the sub-crust must modify this simple argument ; and, secondly, that it has to be shown that the zone of tension is sufficiently rigid to crack, instead of yielding by plastic deformation.

Oldham, in a memoir just received, makes a very claborate study of the whole question. In this, after a preliminary discussion of the problems awaiting solution and the nature of geodetic methods, he calculates the effects of an imaginary range of simple step-like form, sufficiently near the form of the real Himalaya to give approximately the same gravity-effects. From this he proceeds to determine the real form of the Gangetic trough on the geodetic evidence, and concludes that it is about 20,000 feet deep between 80° and 84^{c}, and again in the Upper Punjab, but not more than 15,000 feet in the longitude of Delhi. This shallowing is probably not due to unequal sinking but to the continuation, across the trough-floor, of the Aravalli Mountains, which appear also to enter into the Himalayas beyond. The greatest depth is not necessarily close to the Himalayan margin, but may be some distance further south. Thus his cross-section of the trough comes to resemble more nearly that given by Burrard. As to the lateral extension of the trough, Oldham finds it to continue to Assam on the east and the Salt Range in the north-west, its southern edge being for the most part concealed under Alluvium towards these two extremes: it does not therefore bend round as do the alluvial plains, which overlap it towards the Arabian Sea and Bay of Bengal, but is bounded by a hidden rock-barrier beneath them, the geological evidence here confirming the geodetical. For these reasons Oldham speaks of it as the Gangetic, not the Indo-Gangetic trough.

He then proceeds to discuss the support of the Himalayas, and concludes that there is over-compensation in the Central Himalayas and under-compensation in the outer region, the strains thus produced being well within the limit which the rigidity of the crust can support, on Barrell's calculations. To a further alternation of over-and under-compensated areas under the plains and northern Peninsula respectively, he attributes the geodetic anomalies of the " hidden range" of Burrard. Evidently, however, this provides us with a generalization on the anomalies, rather than with an explanation of them. Finally, after considering every theory yet proposed to explain the tangential pressures that produce the mountain-folds, he dismisses all as inadequate.

Here for the present the matter rests. It cannot be said that there is any agreement as to how the Himalayas were raised or the Gangetic trough formed, and yet there scem to be signs of reconciliation between divergent views. Much remaius to be discovered before a settlement can be reached. More geodetic observations are needed-more among the high Himalayas as urged by Oldham; new observations at pairs of stations near in position but differing greatly in altitude as suggested (among other proposals) by Rarrell; more primevertical observations to combine with those in the meridian. All this the Indian Survey will give us in time, and geodesists in other countries will deal with other mountain ranges. Meanwhile geologists will find scope for the scientific jmagination in devising new theories of mountain-formation, since none of the old seems to bave survived criticism; and areas of tension as well as areas of compression will need study, in which geodetic results must be given the attention they deserve.

When we consider the high level of ability shown by this group of authors whose work we have tried to summarize, and remember that all are or have been in the service of the Government of India, we may express the hope that the reputation of the Indian Surveys may be maintained in the future, and that neither the pressing need for investigations of immediate practical value nor the desire for economy may prevent the continuation of work upon these broad problems-work which will assuredly prove eventually to be not devoid of practical importance.

APPENDIX II.

(Originally published in the Geographical Journal, October, 1918 : reprinted by permission. of the Secretary, Royal Geographical Society).

gEOLOGICAL INTERPRETATIONS OF GEODETIC RESULTA.

a CRITICAL EXAMINATION of Mi. R. D. OLDHAM'S RECENT
 TREATISE on HIMALAYAN STRUCTURE

BY

Colonet. Sil Sidney Bimbald, K. C.S.I., R.E., F. K. S., Sunveyor General of India.

The alluvial plains of the Ganges conceal from our view a deep "trough" that has been formed in the Earth's crust. The "trough" is bounded on the north by the Himalayan mountains and on the south by an ancient table-land. .This " trough" was called by Suess the Himalayan Foredeep; its origin and its relationship to the mountains are among the unsolved problems of geology and geophysics.

For many years the Trigonometrical Survey of India has been taking geodetic observations over both hills and plains: it has determined the direction and the intensity of gravity at numerous places. During its operations its chiefs have frequently had the benefit of consultation with foreign delegates at International Geodetic Conferences, and with successive directors of the Geological Survey of India. The gap; between geology and geodesy is however difficult to bridge : the students of the two branches of science have been differently trained, and the best hope of future progress lies in personal collaboration.

Mr. R. D. Oldham, f. u.s. has lately publishecl a memoir* entitled,
"The Structure of the Himalayas, and of the Gangetic Plain, as elucidated by "Geodetic Observations in India."

When a book dealing with geodetic results is written by a professional geologist it starts on its career with the keen interest of geodesists. But Mr. Oldham's treatise will do nothing towards bridging the gap; its attempts to lower the standard of geodetic accuracy will be resented. As a book it is difficult to follow; for though its language is that of positive assertion, its meanings are frequently obscure. Individual sentences may be strongly worded, yet in the aggregate their collective meaning is nncertain.

In his geodetic calculations Mr. Oldham's first step is to discard the Himalaya mountains of nature and to substitute for them an "Imaginary Range", the dimensions and contour The imnginnry range. of which he has designed; he says that the method of geodesy is too laborious. He therefore decides to ignore "the complicated contour of the actual Himalayas." He also assumes in his calculations that his imaginary range has an east and west direction, whereas the true Himalaya extend over 7 degrees of latitude.

Mr. Oldham tries to show that his imaginary range is similar to the true Himalaya in its powers of attraction. The safest way of making such a comparison would be to test the attraction of the imaginary mountains uncompensoted against the attraction of the true monntains uncompensated. But this test is not faced; both the imaginary and the true

[^6]mountains are assumed to be wholly compensated by underlying deficiencies of matter, and the resultant attractions are thus reduced to small quantities. The attraction of a mountain mass causes deflections of the plumb-line, but if the mass be assumed wholly compensated by underlying deficiencies of matter, its positive attraction will become nullified by the negative attraction, and the deflections will tend to vanish. The deflection of the plumb-line caused at the station of Kaliana by the positive attraction of the true Himalaya is $58^{\prime \prime}$; that caused by the Imaginary Range is $6^{\prime \prime}$. The discrepancy is no less than $52^{\prime \prime}$, but by taking compensation into account, Mr. Oldham reduces the Himalayan effect from $58^{\prime \prime}$ to $3^{\prime \prime}$, and the effect of his Imaginary Range from $6^{\prime \prime}$ to $2^{\prime \prime}$ (page 42). He theu compares $3^{\prime \prime}$ with $2^{\prime \prime}$ and argues that a discrepancy of $l^{\prime \prime}$ is admissible.

If we are dealing with a large deflection such as $58^{\prime \prime}$, a discrepancy of $1^{\prime \prime}$ denotes an error less than 2 per cent. But when the large deflection has been reduced by compensation to $3^{\prime \prime}$ a discrepancy of $1^{\prime \prime}$ denotes an error of 33 per cent. Mr. Oldham states that the attraction of the Imaginary Range (compensated) exceeds that of the true range at all stations, but there are mistakes in his computations (table 5). At Lambatach in the mountains the effect of the imaginary range (compensated) is 55 per cent. larger than that of the true range: whilst at Kaliana, 41 miles distant from the foot of the mountains, the effect of the imaginary range is 33 per cent. smaller than that of the true range; errors such as these prove that the imaginary range is not suitable for geodetic investigations.

It is true that when Mr. Oldham first introduces bis imaginary range (page 36) he excuses it on the grounds that it is intended for the preliminary stages and not for the final calculations of the investigation. But he fails to adhere to this stipulation : at the end of his book he arrives at final and positive conclusions concerning the compensation of the Himalaya mountaius (pages 112,114) and he claims to have discovered the form of the underground floor of the whole Gangetic trough, (page 119) ; these conclusions are all based on the Imaginary Range.

We use the word "trough" for want of a better. The word conveys the idea of a long rock hollow filled with loose alluvium. But at moderate depths alluvium becomes compacted
The ase of the word "trough." into solid rock : and at greater depths it may become metamorphosed. Mr. Oldham describes the Gangetic " trough" as though it were a simple depression in the rock-surface filled with alluvium, and as though the alluvium were 16,000 feet deep (pages 7, 8, et seq.). This value of the depth is obtained from Middlemiss's measurements of exposed strata at the foot of the Himalaya in Kumaun, north-east of Delhi. (Geological Survey of India, XXIV, page 29). But Middlemiss shows that these strata are built up of the following thicknesses :-

				Feet	
Siwalik conglomerate	\ldots	\ldots	\ldots	3,000	
Sand-rock	\ldots	\ldots	\ldots	\ldots	8,000
Sand-stone	\ldots	\ldots	\ldots	\ldots	6,000

Thus the trough is not a rock-basin containing loose alluvium ; it is a basin constructed of ancient rocks in which tertiary rocks have been consolidated. The dividing line between the northern wall and its solid contents can only be discovered by a geologist. Geodesists have used the word "trough" to denote the crustal zone throughout which the rock is of lower density than normal : and they take the depth of the trough to be the depth to which deficiency of density extends, independently of the kind or age of the rocks involved.

We have now to consider this problem :-if the sides and floor of a trough have been formed of ancient rocks, and if its contents consist of tertiary rocks, can a pendulum be utilised to The depth of the Gangetic trongh. determine the depth of the lowest tertiary rocks?

If at any place a pendulum is observed to be swinging at a slower rate than normal, a deficiency of rock in the underlying crust is indicated: whereas if a pendulum is observed to oscillate rapidly, the inference is warranted that the underlying crust is unusually dense These variations in the rate of swing at different places signify variations in the force of gravity, and constitute what are known as local "gravity anomalies". Wherever a gravity anomaly is observed to be negative, the crust is abnormally light, and wherever a gravity anomaly is positive the crust is dense.

An excess or defect of matter may be near the surface of the crust, or it may be hidden at a great depth. Geodesists have met with difficulties in dealing with this problem of depth: they can prove the existence of an excess of matter in the crust, but they are unable to determine whether the excess is superficial or deep*.

Observations have shown that the density of the crust is different in different regions, and varies from place to place, and that these unceasing variations extend downwards to great depths, (perhaps 70 miles).

If a pendulum station is situated above the light tertiary rocks of the Gangetic trough, the gravity anomaly will have a tendency to be negative. But the deeper rocks will affect the pendulum also: and if they are unduly light they will accentmate the negative tendency, whereas if they are dense, they will connteract that tendency. A gravity anomaly is due to both surface and deep-seated rocks, and the difliculty is to disentangle their respective effects.

By means of a sounding-line we can discover the depth of water, and by boring we may discover the depth of alluvium, but a pendulum is not a somding nor a boring instrument, and observations of gravity do not determine depths of sea or allovinu.

I do not contend that a pendulum can never be used to determine the depth of a particular rock. I will give an instance in which I think it might be so utilised. The Mysore Gold Mines are situated in a small patch of heary rock (Dharwar schist, density $3 \cdot 00$) which is lying in a surface hollow of the Mysore platean (gueiss, density $2 \cdot 67$).

The patch of heavy rock containing the gold is only 4 miles wide; if pendulum observations on the gneiss surrounding the pateh give a constant gravity anomaly, and if the anomaly at once becomes larger at stations on the patch, the increase in the intensity of gravity may be fairly attributed to the excessive density of the patch. No complete investigation has yet been made, but Lenox-Conyngham found that the gravity anomaly on the patch was $0 \cdot 0: 34$ greater than at Bangalore (Professional Paper 15, page 24, Survey of India): he has calculated that this anomaly would denote a depth of about 13,500 feet for the heary schist of the patch. The gold mining operations have now reached a depth of 5,000 feet. The reason, which would justify us in this case in attributing the increase in the gravity anomaly to the patch, would be that the pendulum stations on and off the patch being so near together (i.e., within 2 to 3 miles) the canse of the increase would appear to be local.

The Gangetic alluvium presents a different problem: its area is great and we caunot attribute anomalies to any local cause such as the lightness of alluvium. The geodetic observations have led us to believe that the Earth's crust north of the alluvium is deficient in density to a great depth, and that south of the alluvium the density of the crust is excessive \dagger. The junction of the two different densities occurs in the crust underlying the alluvium.

Mr. Oldham considers that the depth of the trough is about 16,000 feet at the northern edge and that it gradually decreases from north to south (pages 82, 119). All gravity anomalies that can be made to fit this hypothesis he interprets as due to the lightuess of alluvium. But anomalies that do not fit he interprets as due to deep-seated rocks below the alluvium.

On page 81 he writes of the station Monghyr :-
"Though situated close to the southern edge of the alluvium it gives a Bouguer " anomaly of-031, and a Hayford of-.024 dyne, and, as it is difficult to believe that there "can be a thickness of over 4,000 feet of alluvium under this station, we must fall back "on the supposition that the anomaly is due to a more deep-seated deficiency of density. " A similar, though smaller defect of density at the station of Sasaram, suggests that in "both cases the anomaly may be due to a deep-seated defect of density in the rocks below "the alluvium".

The fact that the anomalies at Monghyr and Sasaram have to be rejected as untrustworthy measures of the depth of surace alluvium raises the question,-What security is there that other anomalies give reliable measures? There is no security; a gravity anomaly is a measure of the density of the Earth's crust, and not of the uppermost layer only.

[^7]If the gravity anomalies at alluvial stations were wholly due to the lightness of surface alluvium, they would everywhere be negative; but at several stations on the alluvium the gravity anomalies are positive. On page 81, Mr. Oldham writes of two stations on the alluvium, at which gravity is in excess :-
"The high positive anomaly at Kisnapur is evidently the result of a deep-seated "excess of density in the rock underlying the alluvium, but its magnitude, and the smaller "positive anomaly at Chatra, show that the alluvium cancot have any great thickness, "comparable to that in the Gangetic trough, for if there were any great thickness of alluvium "the negative effect of the defect in density would more largely neutralise the deep-seated "excess of density in one case, and in the other would make the anomaly negative, instead " of positive".

This argument is incorrect; the positive anomalies merely show that there is an excess of matter in the crust, notwithstanding the surface alluvium; they furuish no evidence as to the depth of alluvium.

The gravity anomaly at Mian Mir on the alluvium is $+0 \cdot 0+0$ dyne, showing that gravity is in excess. On page 85, Mr. Oldham writes :-
"The positive anomaly at Mian Mir shows that the alluvium cannot have any great "thickness here".

The positive anomaly at Mian Mir merely denotes that the lightuess of the surface alluvium is more than counterbalanced by the density of the deeper rock: it is no proof that the alluvium is shallow.

To illustrate the risks of using gravity anomalies as measures of depth, I will refer to Hecker's observations of gravity over the ocean*. When Hecker was vertically over the Touga Deep he found that the deficiency of gravity was- $0 \cdot 245$ dyne. If Hecker had adopted Mr. Oldham's method, he would have deduced the depth of the 'Tonga Deep to be 13,300 feet: the sounding lead showed that the true depth was 27,800 feet.

When Hecker's steamer crossed the Tonga platean, he found that the gravity anomaly was $+0 \cdot 264$ dyne. If then he had used the argument that a positive anomaly denotes shallow depth, he would have concluded that the Tonga platean could not be far below the surface of the sea. The soundings showed that it was 8,800 feet cleep.

If an observation for gravity is taken over the ocean, the presence of water can be The density of allavium at depths. allowed for as its density is known. But the density of alluvium when compressed and compacted at moderate and great depths is an uncertain quantity. Mr. Oldham has assumed the average density of the Gangetic alluvium from the surface to a depth of \pm miles to be $2 \cdot 16$. The rock-walls of the trough have a density of $2 \cdot 67$, and he assumes that the contents of the deep trough have a density of 20 per cent. less than the rock walls.

General Sorsbie, anthor of Geology for Engineers, estimates that the mean density of the Gangetic deposits, loose and solid, shallow and deep, would be about 24. Mr. Hunter has determined the density of exposed Siwalik sandstone at Hurdwar and Mohan, and has found it vary from $2 \cdot 35$ to $2 \cdot 60$, and these specimens were broken from weathered scarps and were possibly less compact than when buried and compressed by the weight of miles of superincumbent strata. He has determined the density of khankar (carbonate of lime) dug from the surface of the alluvial plains, and has found it to average $2 \cdot 34$. Barrell in his investigations of the Strength of the Earth's Crust assumes $2 \cdot 5$ as the clensity of the deposita of the Nile and the Niger (Journal of Geology, XXII, page 43).

There are thus reasons for doubting whether Mr. Oldham's assumption of density=2'16 is justifiable, and it will be useful to show the effects upon his results if a density-value of $2 \cdot 4$ be substituted.

[^8]| Station.
 (See pages 84 and 90). | Distance from northern edge of trough iu miles. | Depth of alluyium ab deduced from oravity anomaly: | |
| :---: | :---: | :---: | :---: |
| | | Density $2 \cdot 16$ according to Otdham. | If deasity $2 \cdot 4$ be snbstitated. |
| | | Fett. | Feet. |
| Rajpore | 0 | 15,000 | 30,000 |
| Delira Dun | 2 | 12,000 | 24,000 |
| Roorkee | 25 | 13,000 | 26,000 |
| Nojli | 38 | 12,000 | 24,000 |
| Pathankot | 1 | 23,000 | 46,000 |

Mr. Oldham claims (pages 91, 119) that his geodetic values of depth at the northern edge of the plains agree with the geological value, namely 16,000 feet.

My table shows that his claim can only be established if an unduly low density is assumed for the alluvium. The adoption of the density 24 , produces a great discrepancy between the so-called geodetic and geological values.

It must not be supposed that I an putting forward the clepths in the last columus of these tables as probably correct: they are, I think, based on more reasonable assumptions than the figures in the third columns, but the lesson they teach is that the method adopted of deducing depths of surface alluvium from gravity anomalies is unreliable. The magnitudes of the quantities in the last column support the view that the negative anomalies over the Gangetic trough are partly due to the attenuation of the rock that is below the tertiary deposits.

On page 119, Mr. Oldham writes:-
"We have also found complete confirmation of the geological deduction that the Mr. Oldhanu's couclusions. "depth of the alluvium along the outer edge of "the Himalayas is great, amounting to about " 15,000 to 20,000 feet towards the northern boundary of the alluvial plain, figures which are "in complete accord with those deduced from the geological examination of the Siwalik "hills. This agreement, between the results of two wholly indepeudent and different lines of "research, leaves little room for doubt that we have reached a correct interpretation of the "underground form of the Gangetic trongh from near its northern limit to the southern "boundary, and that its maximum depth is about 15,000 to 20,000 feet, possibly more on "some sections probably less on others, but in most cases lying within the limits named."

In this summary Mr . Oldham claims to have discovered the underground form of the Gangetic trongh from north to sonth, and from east to west. The average width of the trough from north to south is 1.50 miles ; its length from east to west is 1,000 miles: it occupies an area of 150,000 square miles. Mr. Oldham claims to have interpreted the underground form of this great alluvial area by means of the "agreement between the results of two wholly inde"penclent and different lines of research".

Let us consider upon what grounds are these claims based. The geological deduction from exposed strata is that the depth of the trough "t one point near its northern edge is 16,000 feet (page 6) : there is no geological evidence of depth east, or west of this point, and there is no geological cvidence anywhere as to the maximum depth of the trough, or as to the distance from the clge at which the maximum depth occurs (page 8). The geological "line of rescarch" is thus limited to one point in a trough 1,000 miles long and 150 miles broad. Certain geodetic results can be brought into approximate agreement with this one geological deduction by the adoption of a particular value of surface density.

But even the alleged agreement itself "between the two wholly independent lines of "research" is not clearly indicated. The geological deduction was made in the foot-hills of Kumaun south of the Ganges, where no geodetic stations exist ; in the foot-hills just north of the Ganges there are two geodetic stations, Rajpore and Delra Dun. In order to confirm Mr.

Oldham's geological conjecture that deep alluvium exists under Rajpore and Dehra Dun, negative anomalies were required (1 age 107), and these were obtained by the aid of the Imaginary Range (page 90). But the anomalies as calculated by the Trigonometrical Survey are positive, and this result has placed Mr. Oldham in a predicament (page 91). He writes that "these stations cannot be used with any degree of safety in determining the form "of the trough". Thus the agreement between the different lines of research can only be maintained, if two of the most important geodetic results are excluded from the investigation.

From 1866 to 1870 Captain Basevi observed the pendulum at several places in India: The Himalayan Pcudulum Station at Moró he was a careful observer, but in his day no method had been devised of determining the sway of the pendulum stand. When a pendulum is swinging, its stand is swayed by it : and this swaying tends to increase the time of the pendulum's oscillation; consequently if no correction is applied, the deduced value of gravity will be too small; the greater the "flexure" of the stand the greater the error in the observed result.

For his observations in India Basevi used a heavy braced stand. In 1870 he decided to swing his pendulums at a high altitude in Ladak, and in order to lighten his loads and to facilitate transport he introduced a special light stand. 'This light stand he used in his observations at the Indian Station of Mian Mir, and he then transported it across the Himalaya mountains to the station of Moré (height 15,427 feet). In Ladak he died and it is not known what became of the light pendulum staud.

In 1903 Colonel Lenox-Conyngham commenced his modern series of pendulum observations, and during his first tour he visited four of Basevi's stations. His observations gave larger valnes of y than Basevi had obtained, the discrepancies varying from 0.027 at Bombay to 0.044 at Marlras and to 0.103 at Dehra Dun. These discrepancies were attributed by Lenox-Conyngham to the omission of the "flexure correction" by Basevi*.

Other stations of Basevi's were visited in subsequent years. In 1906 Lenox-Conyugham observed at the station of Mian Mir where Basevi had used his special light stand; at this station the discrepancy between the old and the new results was $0 \cdot 112$.

Basevi's pendulum observations have thus been superseded; they served their purpose well, and their supersession is the inevitable fate of all observations which have been rendered obsolete by modern instrumental improvements. His more important stations have been revisited and their results revised. Eighteen of Basevi's stations have not as yet been revisited by modern observers, but in their steal 108 new pendulum stations have been established in India.

If it harl not been for the war, the station of Moré would have been revisited by a British observer in 1915 or 1916. Commander Alessio of the Filippi expelition (1913), endeavoured to observe the pendulum at Moré, but the attempt had to be made too early in the year and was frustrated by heavy snow.

Basevi's results were included in Helmert's compilations for the International Geodetic Association. After Lenox-Conyngham had completed his observations at Mian Mir, the International Association in 1909 deduced from them a "flexure correction" for Mor6. Helmert was constructing a formula that would give the normal value of gravity in any latitude, and the Association wished to show how this formula agreed with observed results. The Association did not intend to convey to geologists the idea that they would now be justified in building far-reaching theories upon the More result.

Unfortunately Professor Borrass who compiled the report made the mistake of assuming that Basevi's light stand had been used at two stations in India, and that its flexure correction had remained the same at both placest. He thought that the light stand had been used at Dehra Dun as well as at Mian Mir and Moré. Believing that Dehra Dun and Mian Mir should be classed together and finding that the two corrections were accordant, he adopted a mean correction and applied it at Moré.

Borrass stated his flexure corrections as follows :-

Deduced at Dehra Dun	\ldots	\ldots	$+0 \cdot 103$
Deduced at Mian Mir	\ldots	\ldots	$+0 \cdot 112$
Mean	\ldots	\ldots	\ldots

[^9]At Dehra Dun the pendulum had been swung on the heavy stand and at Mian Mir on the light one. The agreement between the corrections deduced by Borrass was fortuitous; Borrass's mean value and his probable error being based on misapprehension have thus no weight.

In September 1916 an article by Mr. Oldham on Basevi's pendulum observations appeared in the Geographical Journal, in which the author expressed the opinion that the flexure correction for Basevi's results could be estimated. This bad already been done, but such an estimate cannot be made with sufficient accuracy. It is a question of the standard of accuracy required. Basevi omitted the flexure correction, and nothing now can raise his results to the modern standard of accuracy.*

The flexure of Basevi's heavy stand was apt to vary from station to station, and even the modern stand shows variations of Hexure sufficiently great to necessitate a redetermination whenever the apparatus is re-erected. As to the behaviour of Basevi's light stand we know but one fact, namely, that his Mian Mir result requires a correction of $+0 \cdot 112$.

Mr. Qldham assumes that Basevi's Hexure correction was the same at Moré as at Mian Mir. Basevi recorded that at Mian Mir the stand was erected on a "floor of solid paka "masonry": at Moré he recorled that the soil was "very loose and sandy". Between Mian Mir and Moré the stand had to be carried on meu's backs for hundreds of miles over high mountains and passes : at Moré the stand was exposed to conditions of temperature, pressure, humidity and wind, totally different from those of Mian Mir.

When Mr. Oldham's article appeared 1 did not understand its purport. No one had been criticising Basevi, and his pendulum results were being replaced and extended by the modern series. In his memoir however Mr. Oldham makes the surprising statement (page 110) that the Moré results having been discredited have been reinstatecl. He gives no explanation, no references. I know the history of the More discussion well, but I know of no discredit, nor reinstatement. I can only conclude that by "reinstatement" Mr. Oldham means the article he wrote himself in the Geographical Joumal.

In his memoir (page 111) Mr. Oldham estimates the anomaly for Moré as $-0 \cdot 434$, and compares it with Borrass's result $-0 \cdot 433$, published in 1911. He writes:-
"The two values of anomaly differ by only 001 dyne aud we may take it that the "deficiency at Moré is not far from 43 dyne".

It is hardly necessary for me to point out that the agreement of these two results is no evidence of accuracy. These two results are both derived by the same method from the same observation.

Mr. Oldham's new theory seems to be based upon the anomaly at Moré namely The new Theory. -0.434 ; this is certainly a large negative value, but all anomalies at high altitudes, if deduced on Bonguer's hypothesis, have negative values. Bonguer's hypothesis was that mountains were being supported by the rigidity of the crust. It has been recognised for many years that isostatic compensation must be taken into account, and Hayford's method based on the theory of isostasy has now superseded Bouguer's. The substitution of the theory of isostasy for that of extreme rigidity has had the effect of converting the negative anomalies which formerly obtained at high Himalayan altitudes into positive anomalies.

Instead of deducing the Hayford anomaly by clear steps, Mr. Oldham mixes in the same paragraph two geodetic hypotheses (Bouguer and Hayford) and two systems of mountains, the imaginary and the real (page 111); and then out of this obscurity he draws the conclusion that "in the Central Himalaya compensation is in excess" (pages 112, 114). Having produced no evidence, he writes-
"It is evident that the defect of compensation has disappeared" (page 112).
One assumption leads to another, and his next step is to assume that as the compensation is in excess at Moré, the whole extensive mountain area of the Inner and Higher Himalayas must be over-compensated, buoyant and light. (It might be just as fairly assumed that the gravity anomaly observed at Geneva is applicable to the whole area of Pyrenees, Alps and Carpathians).

Finally Mr. Oldham proceeds to the further assumptions that as this great Himalayan area is buoyant, it must be rising (page 115) ; that the Earth's crust is being uplifted here

[^10]by its buoyancy, and that owing to its uplift the crust to the south is being tilted downwards and is creating the Gangetic trough (page 123). In this way his reinstatement of the Moré result has led up to his theory of the origin of the Gangetic trough.

The Trigonometrical Survey of India bas benefited in the past from the collaboration of men who were not professional geodesists, ti tably, Archdeacon Pratt and Osmond Fisher. These distinguished investigators were endeavouring to utilise the geodetic data for unravelling the secrets of Nature. The welcome that was extended to them was awaiting Mr. Oldham; but his attitude towards geodesy has been different. He has considered it admissible to alter scientific data and to create new data from imaginary ranges. In the same table (pages 77 and 90) he combines true geodetic data with figures of his own, and an uninitiated reader will never realise that the quantities given under the heading of "Hayford compensation" have not been deduced by Hayford's method.

Mr. Oldham's reference to the Aravalli mountains is equally inaccurate. ,This range traverses Rajputana in a north-easterly direction, and terminates near Delhi as a small ridge which is an insignificant topographical feature. Mr. Oldham recalls a geological suggestion made many years ago that this range may once have extended across the Gangetic trough into the Himalaya. He now quotes the deflections of the plumb-line at three stations as evidence in support of this suggestion (page 97). Two of these deflections however furnish no evidence on the point, whilst the evidence of the third (Sarkara) is adverse*. Yet Mr. Oldham sums up as follows:-
"The geological structure has suggested the possibility of an original extension of the "Aravalli range into what is now the Himalayan region; the geodetic observations have "supported this suggestion and zonverted what was only a bare possibility into something "more than a probability"

So mistaken indeed are Mr Oldham's ideas of geodetic principles and accuracy, that when he found his calculation of th. depth of the alluvium at Agra was not in accord with the depth obtained by boring, he attributed tios disagreement not to his own hypotheses but to the geodetic data. (Page 80) He avoided this disagreement not by reconsidering his own assumptions, but by altering the observed results. On page 112 he says he found it "necessary to apply a correction of $-\cdot 02$ dyne" to the pendulum results as the latter did not give the depth of the alluvium correctly: and he even suggested that this Agra correction might be applied to Baseri's observations at Moré. The scientific precautions taken in the observation of pendulums become useless, if the results, obtained by labour and care, are to be treated as they are in this memoir.

* Any reader can check my criticism by examining the mup attuched to the momoir. If the Araralli axis is produced it will pass north-west of Sarkara; this will not diminish the northerly deflection at Sarkara.

APPENDIX III

List of Survey of India Publications

(Corrected up to 30th September 1918)

PUBLICATIONS

of the

SURVEY OF INDIA

\qquad
SYNOPSIS

A-HISTORY AND GENERAL REPORTS.

Memoins				Page
	111
Annual Reports	(Geueral Reports	\ldots	...	111
	$\{$ Extracts from Narrative Reports	...	\ldots	111
	(Records of the Survey of India	\ldots	\ldots	112
Special Repoits				112

B-GEODETIC WORKS UF REFERENCE.

Everest's Gieat Arc Books 112
G.T.S. Volumes 112
Synoptical Voldmes 114

Tilangulation Pamphlets 115, 123
Leveling Pamphlets 115
Tide Tables 116

C-CATALOGUES AND INSTRUCTIONS.

Departiental Obders...	\ldots	\ldots	\ldots	\ldots	\ldots	116
Catalogues and Lists... $_{\text {... }}$	\ldots	\ldots	\ldots	\ldots	\ldots	117
Tables and Star Charts	\ldots	\ldots	\ldots	\ldots	\ldots	117
Old Manuals \ldots	\ldots	\ldots	\ldots	\ldots	\ldots	118
Survey of India Hand-Books	\ldots	\ldots	\ldots	\ldots	\ldots	118
Notes and Instructions	\ldots	\ldots	\ldots	\ldots	\ldots	118

D-MISCELLANEOUS PAPERS.

Unclassimiev Paters	$\{$ Geography, Special Reports,			...	$\begin{array}{cc} \ldots & 119 \\ 119, & 120 \end{array}$
		jectio			
Professional Papers	
Depaitmental Papers...	\ldots	\ldots	\ldots
Professional Forms

A-HISTORY AND GENERAL REPORTS.

(Obtainable from the Superintendent, Map Publication, 13, Wood Street, Calcutta).

MEMOIRS.

1. A Memoir on the Indian Surveys. By C. R. Markham. India Office, London, 1871. Price Rs. 5 or $G^{s}-S^{d}$.
2. Ditto (second edition). By C.R. Markham, C.K., F.R.S., India Office, London, 1878. Price Rs. 5-8 or $7^{\text {s. }}$-4 .
3. Abstract of the Reports of the Surveys and of other Geographical Operations in India, 1869-78. By C. R. Markham and C. E. D. Black, India Office, London. Published annually between 1871 and 1879. (Out of print).
4. A Memoir on the Indian Surveys, 1875-1890. By C.E.D. Black, India Office, London 1891. Price Rs. $5-8$ or $7^{*}-4^{d}$.

ANNUAL REPORTS.

Reports of the Revenue Branch . 1851-1877-(1851-67 and 1869.70, out of print).
Price Rs. 3 or 4^{3}.
Ditto Topographical Branch . 1860-1877.-(Out of print).
Ditto Trigonometrical Branch . 1861-1878.-(1861-71, out of print).
Price Rs. 2 or $2^{3}-8^{d}$.
In 1878 the three branches were amalgamated, and from that date onwards annual reports in single volumes for the whole department, are available as follows:-

General Reports $\left\{\begin{array}{l}\text { from } 1877-1900 \text { (1877.79. } 1887-88,1895-96 \text { and } 1897-98 \text {, out of print) } \\ \text { ot Rs. } 3 \text { or } 4 \cdot \text { per volume. } \\ \text { from } 1900-1918 \text { (1902-04 and } 1906-08 \text {, out of print) at Rs. } 2 \text { or } 2^{s}-8^{d}\end{array}\right.$ per volume.

From 1900 onwards the leport has been issued amually in the form of a condensed statement known as the "General Report" supplemented by fuller reporta, which were called "Extracts from Narrative Reports" up to 1909, and since then have been styled "Records of the Survey of India." These fuller reports are available as follows:-
(a) "Extracts" Volumes at Rs. $1-8$ or 2 " per volume.

1900-01-Recent Improvements in Photo-Zincography. G. T. Triangulation in Upper Burma. Latitude Operations. Experimental Hase Measurement with Jäderin Apparatus. Magnetic Survey. Tidal and Levelling. Topography in Upper Burma. Calcutta, 1903. (Out of print).

1901-02-G. T. Triangulation in Upper Burma. Latitude Operations. Magnetic Surrey. Tidal and Levelling. Topography in Upper Burma. Topography in Sind. Topography in the Punjab. Calcutta, 1904. (Ont of print.)

1902-03-Principal Triaugulation in Upper Burma. Topography in Upper Burma. Topography in Shan States. Survey of Sämblar Lake. Latitude Operations. Tidal and Levelling. Magnetic Survey. Introduction of the Contract System of Payment in Traverse Surveys. Traversing with the Subtense Bar. Compilation aud Reproduction of Thāna Maps. Calcutta, 1905.

1903-04-Magnetic Survey. Pendulum. Tilal and Levelling. Astronomical Azimuths. Utilization of old Traverse Data for Modern Surreys in the United Provinces. Identification of Bnow Penks in Nepäl. Topographicnl Surveys in Sind. Notes on town and Municipal Surveys. Notes on Riverain Surveys in the Punjab. Calcutta, 1906.

1904-05-Magnetic Survey. Pendulum Operations. Tidal nad Levelling. Triangulation in Baluchistinu. Survey Operations with the Somaliland Field Force. Calcutta, 1907.

1905-06-Magnetic Survey. Pendulum Operations. Tidal and Levelling. Topograply in Shan States. Calcuttn, 1908.

1806-07-Magnetic Survey. Pendulum Operations. Tidal and Levelling. Triangulation in Baluchistān. Astronomical Latitudes. Topography in Shan States, Calcutta, 1909.

1907-08-Magnetic Survey, Tidal and Levelling. Astronomical Latitudes. Pendulum Oporations. Topography in Shan States. Calcutta, 1910.

1908-09-Magnetic Surveg. Tidal and Levelling. Pendulum Operations. Triangulation. Calcutta, 1911.

ANNUAL REPORTS-(Continued).

(b) "Records of the Survey of India" at Rs. 4 or $5^{s} .4^{4}$ per volume, except where otheruise statad.
Vol. I-1909-10—Annual reports of parties and offices Calcutta, 1912.
II-1910-11—Annual reports of parties and offices Calcutta, 1912.
II1-1911-12-A nnual reports of parties and offices Calcutta, 1913.
IV-1911-13--Nxplorations on the North-East Frontior Calcutta, 1914.
V-1912-13—Aunual reports of parties and offices Calcutta, 1914.
VI-1912-13-Link comecting the Triangulations of Iudia and Russia Dehra Dūa, 1914.
VII-1913-14-Annunl reports of parties and offices Calcutta, 1915.

IX—1914-15-A unual reports of parties and offices Calcutta, 1916.
X—1915-16-A nnual reports of parties and offices ... Delira Dūn, 1917.
XI-1.916-17-A nnual reports of parties and offices ... Dehra Dūn, 1918.
XII-Notes on Sursey of India Maps and the modern develipment of) Calcutta, 1919.

XIII-19/7-18-Annual reports of parties and offices
Dehra Dūn, 1919.

SPECIAL REPORTS.

1. *Report on the Mussoorie and Landour, Kumaun and Garhwāl, Ranikhet and Kosi Valley Surveys extended to Peshãwar and Khāgān Triaugulation during 1869-70. By Major T. G. Montgomerie, R.E. (Out of print).
2. *Account of the Survey Operations in connection with the Mission to Farkand and Kashghar iu 1873-74. By Captain Henry Trotter, R.E. Calcutta, 1875. (Out of print).
3. Report on the 'I'rans-Himalayan Explorations during 1869. (Ont of print).
4. Report on the Trans.Himālayan Explorations during 1870. Dehra Dūn, 1871. (Out of print).
5. Report on the Trans-Himālayan Explorations during 1878. Calcutta, 1880. (Out of print).
"Notes of the Survey of India" are issued monthly. (Stocked in the Surveyor General's Office, Calcutta). Price as. 2 or 2^{d}.

B-GEODETIC WORKS OF REFERENCE.

(Obtainable from the Superintendent of the Trigonometrical Survey, Dehra Dün, U.P.) EVERESTS' GREAT ARC BOOK.

1. An account of the Measurement of an Are of the Meridian between the parallels of $18^{\circ} 3^{\prime}$ and $24^{\circ} 7^{\prime}$. By Cıpt. George Everest. East India Company, London, 1830. (Out of print).
2. An account of the Measurement of two Sections of the Meridional Arc of India, bounded by the parallels of $18^{\circ} 3^{\prime} 15^{\prime \prime}, 24^{\circ} 7^{\prime} 11^{\prime \prime}$ and $29^{\circ} 30^{\prime} 48^{\prime \prime}$. By Lt.-Col. G. Everest, F. R. S. East India Company, London, 1847. (Out of print).
3. Engravinge to illustrate the above. London, 1847. (Out of print).
G.T.S. VOLUMES-deracribing the Operations of the Great I'rigonometrical Survey. Price Rs. $11-8$ or 14^{s} per volume, except where otherwise stated.
Vol. I-Standards of Measure and Base-Lines, also an Introductory Account of the early Operations of the Survey, during the period of 1800-1830.

Dehra Dūn, 1870. (Out of print).
Appendix No. 1. Description of the method of comparing, and the appuratus employed.
appeadix No. 2. Comparisuns of the Lengths of 10 .feet Standurds A and B, und determinations of the Difference of their Expansions.
Appendix No, 3. Comparisons between the lofeet Standards $I_{B} I_{S}$ and A.
Aplenciix No. 4. Comparisons of the 6 -inch Brass Scales of the Compensuted Microscopes.
Δ pI'endix No. 5. Determination of the Length of the Inch [7.8] on Car'y's 3-foot Brass Scale,
Appendix No. 6. Compariaons between the 10 -feet Standard Bars ls and A for determining the Expansion of bar A.
Appendix No. 7. Final determination of the Differences in Length between the 10 -foet Standurds $I_{B} I_{S}$ and A.
Appendix No. 8. On the Thermometers employed with the Standards of Length,
Appendix No. 9. Determination of the Lengths of the Sub-divisions of the Incli [a.b].
Appendir No. 10. Report on the Practical Errors of the Measurement of the Cape Comoria Base.
II-A History and General Description of the Reduction of the
Principal Triangulation.
Dehra Dūn, 1879. (Out of print).
Appendix No. 1. Inveatigations applying to the Indian Geodesy.
Appendix No. 2. The Micrometer Microscope Theodolites.
Appendix No. 3. On Observations of Terrestrial Refraction at certain stations sitaated on the pluins of the Punjab.
Appendix No. 4. On the Periodic Errors of Gradnated Circles, \&c.
Appendix No. 5. On certain Modifications of Colonel Everest's System of Observing intro. duced to meet the specialities of particular instramente.
Appendix No, 6. On Tidal Observations at Karrachee in 1855.
Appendix No. 7. An alternative Method of obtaining the Formule in Chapters VIII and

Appendix No. 8. On the Dispersion of Circuit Frrors of Triangulation after the Angles have been corrected for Figaral conditions.
Appendir No. 9. Corrections to azimuthal Observations for imperfect Instramental ddjustments.
Appendix No. 10. Redaction of the N.W. Qaadrilateral-the Non-Circnit Triangles and their Final Figural Adjustmente.
Appendix No. 11. The Theoretical Errors of the Triangalation of the North. West Quadrilateral.
Appendix No. 12. Simultaneous Redaction of the N.W. Qnadrilaternl-the Compatations.
Vol. III-North-West Quadrilateral.-The Principal Triangulation, the Base-Line Figures, the Karāchi Longitudinal, N. W. Himālaya, and the Great Indus Series. Dehra Dün, 1873. (Out of print.)
IV-North-West Quadrilateral-The I'rincipal Tringulation, the Great ArcSection $24^{\rho}-30^{\circ}$, Rahūn, Gurhāgarh and Jugi-Tīla Meridional Series and the Sutlej Series.
... ...
Dehra Dūn, 1876.
IVA-North-West Quadrilateral-The Principal Triangulation, the Jodhpore and the Eastern Sind Meridional Series with the details of their Reduction and the Final Results. Debra Dũn, 1886.
V-Pendulum Operations of Captains J. P. Basevi and W. J. Heaviside, and their Keduction. Dehrn Dūn and Calcutta, 1879.
Appendix No. 1. Account of the Remensurement of the Length of Kater's Pendulum at the Ordnance Survey Office, Southampton.
Appendix No, 2. On the Relation betwen the Indian Pendulam Operations, and those which have been conducted elsewhere. .
Appendix No. 3. On the Theory, Use and History of the Convertible Pendulum.
Appendix No. 4. On the Length of the secunde Pendulum determinable from Materiale now existing.
Appendix No. 5. A Bibliographical List of Works relating to Pendulum Operations in connection with the Problem of the Figure of the Earth.
VI-South-East Quadrilateral-The Principal Triangulation and Simultaneous Reduction of the following Series:-Great Arc-Section 18° to 24°, the East Coast, the Calcutta and the Bider Longitudinal, the Jabalpur and the Biläspur Meridionals. Dehra Dūn, 1880. (Out of print.)
VII-North-East Quadrilateral-General Description and Simultaneous Reduction. Also details of the following five series:-North-East Longitudinal, the Budhon Meridional, the Rangir Meridional, the Amua Meridional, and the Karāra Meridional. Dehra Dūn, 1882.
Appendix No. 1. The Details of the Separate Reduction of the Budhon Meridional Series or Series J of the North-East Quadrilateral.
Appendix No. 2. Reduction of the North-East Qaadrilateral. The Non-circuit Triangles and their Final Figural Adjustments.
Appendix No. 3. On the Theoretical Errors Generated Respectively in Side, Azimnth, Latitude and Longitude in a Chain of Triangles.
Appendix No. 4. On the Dispersion of the Residual Errors of a Simultaneons Redaction of Several Chaids of Triangles.
VIII-North-East Quadrilateral-Detaila of the following eleven series:Gurwāui Meridional, Gora Meridional, Hurilãong Meridional, Chendwär Meridional, North Pārasnäth Meridional, North Malūucha Meridional, Calcutta Meridional, East Calcutta Longitudinal, Brahmaputra Moridional, Eastern Fron-tier-Section $23^{\circ}-26^{\circ}$, and Assam Longitudinal.

Dehra Dūn, 1882.
IX-Telegraphic Longitudes-during the years 1875-77 and 1880-81.
Dehra Dūn, 1883.
Appendix to Part I. 1. Determination of the Geodetic Elements of Longitude Stations.
2. Descriptions of Points nsed for Longitude Statious.
3. Comparison of Geoletic with Electro-Telegraphic Ares of Longitude.
4. Circait Eitors of Observed Ares of Longilude.
6. Results of Idiometer Obsorvations made during Season 1880-81.

Appendix to Part II. 1. Situations of the Longitule itations ar llombay, Aden and Suez.
2. Anrvey Operations at Arlen.
3. Resnlts of the Iriangulation.
4. Right Ascensions of Clock Stars.

X-Telegraphic Longitudes-during the years 1881.82, 1882-83, and 1883-84.
Dehra Dūn, 1887.
Appendix to Part I. 1. Determination of the Geodetic Flements of the Longitade Stations.
2. Descriptions of Stations of the Connecting Triangulation and of those at which the Longitude Observations were taken.
3. On tho Errors in ΔL cnased by Armatare-time and the Retardation of the lilectric Current.
4. On the Rejection of some donbtfnl Ares of Season 1881-82.
5. On the probable Causes of the Errcrs of Arc-measarements, and on the Nature of the Defects in the Transit Instraments whici might prodnce them.
G.T.S. VOLU MES-(Continued).

Vol. XI-Astronomical Latitudes-durıng the period 1805-1885. Dehra Dūn, 1890 .
XII-Southern Trigon-General Description and Simultaneous Reduction. Also details of the following two series:-Great Arc-Section $8^{\circ}-18^{\circ}$, and Bombay Longitudinal.

Dehra Dün, 1890.
XIII—Southern Trigon-Details of the following five series:-South Konkan Coast, Mangalore Meridional, Madras Meridional and Const, South-East Coast, and Madras Longitudinal. Dehra Dūn, 1890.
XIV-South-West Quadrilateral—Details of Principal Iringulation and Simultaneous Reduction of its component series. ... Dehra Dūn, 1890.
XV-Telegraphic Longitudes-from 1885 to 1892 'and the Revised Results of Volumes IX and X : also the Simultaneous Reduction and Final Results of the whole Operations. Dehra Dūn, 1893. Appendix No. 1. Determination of the Geodetic Elements of the Longitude Stations.
Appendix No :3. On Retardation (a numerical mistake was made in this appendix in the conversinn of n formula from kilometres to miles: the conclusions drawn cannot therefore be upleld).
XVI-Tidal observations-from 1873 to 1892, and the Methods of Reduction.
Dehra Dūn, 1901.
XVII—Telegraphic Longitudes—during the years 1894-95-96. The Indo-European Arcs from Karāchi to Greenwich. Dehra Dūn, 1901.
Appendix No. 1. Descriptions of Puinte used for Longituda Stations. Appendir No. 2. The Longitude of Madras.
XVIII—Astronomical Latitudes from 1885 to 1905 and the Deduced Values of Plumb-line Deflections. Dehra Dūn, 1906.
Appendir No. 1. On Deflectione of the Plumb-line in India.
Appendix No. 2. Determination of the Geodetic Elements of the Latitude Stations of Brjannera, Bahak, Lambntach and Kidarkunta.
Apnendix No. 3. On the (N-S) Difference exhibited by Zenith Sector No. 1 .
Appendix No. 4. On the Value of the Micrometer of the Zenith Telescope.
Appendix No. 5. On the Azimuth Observations of the Great Trigonometrical Survoy of India, Appendix No. 6. A Catalogue of the Publications of the Great Irrigonometricul Survey of India. Appendix No. 7. On the combination weights employed.
XIX-Levelling of Precision in India from 1858 to 1909. Dehra Dūn, 1910.
Appendix No. 1. Experiment to test the changes, dre to Moistare and Temperatare, in the Length of a Levelling staff.
Appendix No. 2. On the erection of Standard Bench-Marks in India daring the years 1904-1910.
Appendix No. 3. Memorandum on the steps taken in 1905-1910 to enable movements of the Earth's crust to be detected.
Appeadix No. 4. Dyamaic and Orthometric corrections to the Himālayan levelling lines and circuit; and a consideration of the order of magnitade of possible refraction errors.
Appeadix No. 5. The passage of rivers by the Levelling Operations,
Appendix No. 6. The lirrors of the 'Trigonowetrical values of Heights of stations of the priacipal triangulation.
Appendix No. 7. The effect on the spheroidal correction of employing Theoretical instead of Observed valnes of Gravity and a discussion of different formula giving variation of Gravity with Latitnde and Height.
Appendix No. 8. On the discrepancy between the Trigonometrical and spirit-level values of the diflerence of beight between Dehra Dún and Mussooree.
XIXA-Bench-Marks on the Southern Lines of Levelling. Dehra Dūn, 1910. Price Rs. 5 or $6^{5} .8^{d}$.
XIXB-Bench-Marks on the Northern Lines of Levelling. Dehra Dūn, 1910. Price Rs. 5 or $6^{s} \cdot 8^{d}$.
SYNOPTICAL VOLUMES-giving charts, descriptions of stations, and full synopses of coordinates and heights of all stations and points fixed by Principal and Secondary Triangulation.*

Price Rs. 2 or $2^{3}-8^{d}$ per volume unless otherwise stated.
Italic figures are in chronological order and refer to the Index Chart of the G. T. Survey.

North-West Quadrilateral

Vol. I-The Great lndus Series (32). Dehra Dūn, 1874.
II-The Great Arc-Section $24^{\circ}-30^{\circ}$ (6). Dehra Dūn, 1874.
III-The Karachi Longitudinal Series (25). Dehra Dün, 1874.
IV-The Gurhāgarb Meridioual Series (23). Dehra Dūn, 1875.
V—The Rahūn Meridional Series (33). Dehra Dūn, 1875.
VI-The Jogi-Tila Meridional Series (37). and the Sutlej Meridional Series (45). Debra Dūn, 1875.
VII-The N. W. Himālaya Series (22) and the Triangulation of Kashmir (36). Dehra Dūn, 1879.
VIIA-The Jodhpore Meridional Series (62) and the Eastern Sind Meridional Series (64). Dehra Dūn, 1887.

[^11]
SYNOPTICAL VOLUMES—(Continued).

South-East Quadrilateral

Vol. VIII-The Great Are-Section $18^{\circ}-24^{\circ}$ (8). Dehra Dūn, 1878.
IX-The Jabalpur Meridional Series (53). Dehra Dūn, 1878.
X-The Bider Longitudinal Series (43). Dehra Dūn, 1880.
XI-The Bilàspur Meridional Series (58). Dehra Dūn, 1880.
XII-The Calcutta Longitudinal Series (5). Dehra Dūn, 1880.
XIII-The East Coast Series (24). Dehra Dūn, 1880.
XIIIA - The South Pārasnäth (1) and the South Malūncha Meridional Series (17) Dehra Dūn, 1885.
North-East Quadrilateral
Vol. XIV-The Budhon Meridional Series (2). Dehra Dūn, 1883.
XV-The Rangir Meridional Series (4). Dehra Dūn, 1883.
XV!-The Amua Meridional Series (3) and the Knrāra Meridional Beries (12). Dehra llūn, 1883
XVII-The Gurwanni Meridional Series (19) and the Gora Meridional Series (15). Dehra Dūn, 1883.
XVIII-The Hurīāong Meridional Series (21) and the Chendwär Meridional Seriea (14). Dehra Dūn, 1883.
XIX—The North Pārasnāth (27) and the North Malūncha Meridional Series (13). Dehra Dūn, 1883.
XX—The Calcutta Meridional (16) and the Brahmapūtra Meridional Series (56). Dehra Dūn, 1883.
XXI-The Fast Calcutta Longitudinal (48) and the Eastern Frontier SeriesSection $23^{\circ}-26^{\circ}$ (44). Dehra Dūn, 1883.
XXII-The Assam Valley Triangulation, E. of' Meridian 92 ${ }^{\circ}$ (55). Dehra Dūn, 1891. (Out of print.)
XXXV -The North-East Longitudinal Series (20) with the volume of charts. Dehra Dūn, 1909. Price Rs. 5 or $6^{s-} 8^{d}$.

Southern Trigon

> Vol. XXIIJ—The South Konkan Coast Series (11). Dehra Dūn, 1891.
> XXIV -The Mangalore Meridional Series (49). Dehra Dūn, 1891.
> XXV—The South-Enst Const Series (63). Dehra Dūn, 1891.
> XXVI—The Bombay Longitudiual Series (7). Dehra Dūn, 1892.
> XXVII-The Madras Longitudinal Series (54). Dehra Dūn, 1892.
> XXVIII-The Mndras Meridional and Coast Series (46). Dehra Dūn, 1892.
> XXIX—The Great Arc Meridional Series-Section $8^{\circ}-\mathbf{1 8}^{\circ}(9)$. Dehra Dūn, 1899.

South-West Quadrilateral

Vol. XXX.—The Abu Meridional Series (26) and the Gujarat Longitudinal Series (29). Dehra Dūn, 1892.
XXXI -The Khãnpibura Meridional Series (18). Dehra Dūn, 1893.
XXXII-'The Singi Meridional Series (10). Dehra Dūn, 1893.
XXXIII-The Cutch Coast Series (35). Dehra Dūn, 1893. Addendum to the Cutch Coast Series, (Indus delta) (separate pamphlet). Dehra Dūn, 1902.
XXXIV—'lhe Kāthiāwār Meridional Series (28). Dehra Dūn, 1894.
TRIANGULATION PAMPHLETS with charts, are now being issued for every equare degree, giving the results of all minor triangialation, ns well as that shown in Synoptical Volumes. Price Re. 1 or $1^{s}-4^{d}$ per pamphlet. Fide page 123.
LEVELLING PAMPHLETS-giving heights and deecriptions of all Bench-marks,
fixed by levelling of Precision in India and Burina. Each pamphlet embraces an aren of $4^{\circ} \times 4^{\circ}$ and the numbering is the same as that of the corresponding sheets of the $1 / \mathrm{M}$ unp of Indin. Each is illustrnted by a map of the area. Price Rs. 2 or $2^{*}-8^{d}$ per pamphlet except where otherwise stated.

Pamphlet	Nos.	Latitade.	Longitude.	Pablished	Pan	hlet	Nos.	atitucle.	Longitude	Pablishe	
India	34	$28^{\circ}-39^{\circ}$	$64^{\circ}-68^{\circ}$	Dehra Dūn,	1916.	India	44	$28^{\circ}-32^{\circ}$	$72^{\circ}-76{ }^{\circ}$	Dehra Dū	1912.
"	35	$24^{\circ}-28^{\circ}$	$64^{\circ}-68^{\circ}$	"	1911.	"	45	$24^{\circ}-28^{\circ}$	$72^{\circ}-76^{\circ}$	"	1911.
,	38	$32^{\circ}-36^{\circ}$	$68^{\circ}-72^{\circ}$	-	1912.	"	46	$20^{\circ}-24^{\circ}$	$72^{\circ}-76^{\circ}$	"	1912.
,	89	$28^{\circ}-32^{\circ}$	$68^{\circ}-72^{\circ}$	"	1913.		47	$16^{\circ}-20^{\circ}$	$72^{\circ}-76^{\circ}$	"	1912.
"	"	Addendnm			1916.	"	,*	Addendu		"	1915.
"	40	$24^{\circ}-28^{\circ}$	$66^{\circ}-72^{\circ}$	"	1911.	"	48	$12^{\circ}-16^{\circ}$	$72^{\circ}-76^{\circ}$	"	1912.
"	41	$20^{\circ}-24^{\circ}$	$68^{\circ}-72^{\circ}$,	1913.	"	49*	$8^{\circ}-12^{\circ}$	$72^{\circ}-76^{\circ}$	"	1911.
"	43	$32^{\circ}-36^{\circ}$	$72^{\circ}-75^{\circ}$	"	1913.	"	59	$32^{\circ}-36^{\circ}$	$76^{\circ}-80^{\circ}$,	1912.
"	,	Addendum		,	1915.	,	53	$28^{\circ}-32^{\circ}$	$76^{\circ}-80^{\circ}$,	1912.

[^12]
LEVELLING PAMPHLETS-(Continued).

Pamphlet India	Nos. 54	Lntitudo. $24^{\circ}-28^{\circ}$	Longitade. $76^{\circ}-80^{\circ}$	Pablished. Dehra Dūn.	$\begin{aligned} & \text { Pam } \\ & \text { 1914.* } \end{aligned}$	phlet India	Nos. Latitnde. $7824^{\circ}-28^{\circ}$	Longitade. $88^{\circ}-92^{\circ}$ Dehra	Publi Dūn	ed. 1912.
"	55	$20^{\circ}-24^{\circ}$	$76^{\circ}-80^{\circ}$,	1912.	,	, \dagger Addendum			1916.
"	56	$16^{\circ}-20^{\circ}$	$76^{\circ}-80^{\circ}$	"	1912.	"	$7920^{\circ}-24^{\circ}$	$88^{\circ}-92^{\circ}$		1912.
"	57	$12^{\circ}-16^{\circ}$	$76^{\circ}-80^{\circ}$	"	1912.	"	Δ ddendam		"	1916.
"	58	$8^{\circ}-12^{\circ}$	$76^{6}-80^{\circ}$	"	1914.	"	$8324^{\circ}-28^{\circ}$	$99^{\circ}-96^{\circ}$		$1912 . \ddagger$
,	68	$24^{\circ}-28^{\circ}$	$80^{\circ}-84^{\circ}$	"	1911.	Barma	$8420^{\circ}-2 t^{\circ}$	$92^{\circ}-96^{\circ}$	"	1918.§
"	64	$20^{\circ}-24^{\circ}$	$80^{\circ}-85^{\circ}$	"	1912.	"	$8516^{\circ}-20^{\circ}$	$92^{\circ}-96^{\circ}$	"	1917.5
"	65	$16^{\circ}-20^{\circ}$	$80^{\circ}-84^{\circ}$	"	1913.	"	$92.24^{\circ}-28^{\circ}$	$96^{\circ}-100^{\circ}$,	1918.§
"	66	$12^{\circ}-16^{\circ}$	$80^{\circ}-84^{\circ}$	"	1912.	"	$9320^{\circ}-24^{\circ}$	$96^{\circ}-100^{\circ}$		1917.5
"	79	$24^{\circ}-28^{\circ}$	$8 t^{\prime}-88^{\circ}$,	1912.	"	¢94 $16^{\circ}-20^{\circ}$	$96^{\circ}-100^{\circ}$		
,	73	$20^{\circ}-24^{\circ}$	$84^{\circ}-88^{\circ}$		1913.	"	(95 $12^{\circ}-16^{\circ}$	$96^{\circ}-100^{\circ}$	"	1916.§
	74	$10^{\circ}-20^{\circ}$	$84^{\circ}-88^{\circ}$		1913.					
2 L	Edit	on (enlar		Price Re.	$1^{1}-4^{d}$.		\ddagger Heights on pages 45 \& 46 revised in 1918. § Heights revised.			

TIDE TABLES-

Since 1881 Tidal predictions based on the observations of the Survey of India have been published annually by the India Oflice, London. The tables give the time and height of high and low water for every day iu the year at each port, and are published early in the previous year. Current tables are available for the following 4.1 ports :-

Western Ports-

Suez (Egypt)—Basrah—Perim—Aden—Maskat—Būshire—Karächi-Oltha Point and Bet Harbour (Gulf of Cutch)-Porbindar-Port Albert Victor (Kāthiāwār)—Bhaunagar-Bombay (Apollo Bandar)-Bombay (Prince's Dock)-Mormugao (Goa)-Kārwār-Beypore (near Calicut)-Cochin-Minicoy (Indian Ocean)-Tuticorin-Pāmban Pass (Island of Rāmeswaran).

Eastern Ports-

Galle (Ceylon)-Trincomalee (Ceylon)-Colombo (Ceylon)-Negratam—Madras-Cocanāda-Vizagapatam—ralse-Point—Dublat (Saugor Island)-D)iamond Harbour-Kidderpore (Calcutta)-Chittagong-ikgab-Diamond Island (Burma)-Bassein-Elephant Point (Burma) -Rangoon-Amherst-Moulmein-Mergui-Port Blair.

The Tide Tables are issued in the following forms:-
(i) Combined Volume-including all the above ports-Price Rs. 4 or $5^{s}-4^{d}$.
(ii) Part I and Part II-including Western and Eastern ports respectivelyEach part Rs. 2 or $2^{s-}-8^{d}$.
(iii) Pamphlets-giving separately the tables for individual ports or for small lucal groups of ports-Price varying from $4 s .8$ or 8^{d} to Rs. $1-8$ or 2^{s} per pamphlet.

C-CATALOGUES AND INSTRUCTIONS.

(Obtainable from the Superintendent, Map Publication, 13, Wood Strect, Calcutta).

DEPARTMENTAL ORDERS.-

From 1878 to 1885 the Surveyor General's orders were all issued as "Circular Orders." Since then they have been classified as follows:-

From 1885 to $1904: 14\left\{\begin{array}{l}\text { 1-Government of India Orders (culled "Circular Orders" } \\ \text { up to } 1 \times 98 .) \\ \begin{array}{l}\text { 2-Departmental Orders (Administrative). } \\ \text { 3-Departmental Orders (Professional). }\end{array}\end{array}\right.$
In 1904 the various orders issued since 1878 were reclassified as follows :-

$$
\begin{array}{lc}
& \text { Number to date. } \\
\text { 1.-Government of India Orders- } & 707 \\
\text { 2.-Circular Orders (Administrative).- } & 382 \\
\text { 3.-Circular Orders (Professional).- } & 195 \\
\text { 4.-Departmental Orders. (appointments, promotions, transfers, otc.) }
\end{array}
$$

These are numbered serially and had reached the above numbers by September 1918. Government of Inlia Orders and Circular Orlers (Administrative) are bound up in volumes from time to time, as shown below, while Circular Orlers (Professional) are gradually incorporated in the Survey Hand-books. Besides the above, temporary orders have been issued since 1910 in the form of "Circular Memos." These either lapse or become incorporated in some more permanent form, and are therefore only numbered serially for each year. Bound volumes of orders are available as follows:-

1. *Government of India Orders (Departmental) 1878-1903.-Calcutta, 1904.

Ditto	ditto	1904-1908.-Calcutta, 1909. (Out of print).
Ditto	ditto	1909.1913 . -Calcutta, 1915.

[^13]DEPARTMENTAL ORDERS-(Continued).
$\begin{array}{ccc}\text { 2. Circular Orders (Administrative) } & \text { 1878-1903. -Calcutta, } 1904 . \\ \text { Ditto } & \text { ditto } & \text { 1904-1908.-Calcutta, } 1909 . \\ \text { Ditto } & \text { ditto } & \text { 1909-1913.-Calcutta, } 1915 .\end{array}$
3. * Regulations on the subject of Language Examinations for Officars of the Survey of India. Calcutta, 1914.
4. * Map Publication Orders 1908-1914 (Superintendent, Map Publication's Orders.)Calcutta, 1914.
5. Specimens of papers set at Examinations for the Provincial Service.-Dehra Dūn, 1903.-(Out of print).

CATALOGUES AND LISTS.

1. Catalogue of Maps published by the Survey of India. Corrected to 1st October 1917 Calcutta, 1918. Price Re, 1 or $1^{s-6 d}$.

NOTE.-Lists are issued quarterly of new maps published during each quarter, and similar lists for each month appear in the monthly NOTES OF THE SURVEY OF INIIA.
2. Catalogue of Maps of the Bombay Presidencr, Calcutta, 1913. Price As. 4 or 4^{d}.
3. List of the publications of the Survey of India (published annually)-Dehra Dūn. Gratis.
4. Price List of Mathematical Instrument Office. Calcutta, 1913. Gratis.
5. Catalogue of Books in the Head-Quarters Library, Calcutta, 1901. (Out of print).
6. Catalogue of Scientific Books and Suljects in the Library of the Trigonometrical Survey Office. Dehra Dūn, 1908. Price Re. 1 or $1^{*}-4^{d}$.
7. Catalogue of Books in the Library of the Trigonometrical Survey Office. Dehra Dūn, 1911. (Out of print.)
8. Green Lists-PART I-List of offeers in the Survey (half yearly to dates 1st January and 1st July)-Calcutta. Price $4 s .6$ or $6{ }^{d}$.
PAKT IJ-History of Services of Offeers of the Survey of India (unually to date 1st JuIy)-Calcutta. Price As. 8 or \mathcal{S}^{d}.
9. Blue Lists-Ministerial and Subordinate Establishments of the Survey of India.

PARI I-Head quarters and Delira Dūu oflices (published annually to date lat A 1 ril)-Calcutta. Price Re. 1 or $1^{s-4^{d}}$.
PAR'L II-Circles and parties (published annually to date 1st January).-Calcutta.
Price Rs. $1 . \mathrm{S}_{\text {or }} 2$ 2.
(Nos. 8 and 9 are stocked in the Surveyor (Feneral's Ofice, Calcutta).

TABLES AND STAR CHARTS.

1. Auxiliary Tables-to facilitate the calculations of the Survey of India. Fourth Edition, revised. Dehra Dūu, 1906. Price Rs. tor $5^{x}-f^{l}$ in cloth and calf, or Rs. 2 or 2́- \mathcal{B}^{d} in paper and boards.
2. Auxiliary Tables-of the Survey of India. lifth Edition, revised and extended by J. de Graaff Hunter, M.A. In parts-

PART I—Graticules of Maps. Dehra Dūn, 1916. Price Re. 1 or $1^{s-4} 4^{d}$. PART II-Mathematical Tables Delura Dūn, 1918. Price Re. 1 or $1^{d} 4^{d}$.
3. Tables for Graticules of Maps. Extracts for the use of Explorers. Dehra Dūn, 1918. Price As. 4 or 4^{d}.
4. * Metric Weights and mensures and other Tables. Photo-Litho Office. Calcutta, 1889. (Out of print.)
5. Logarithmic Sines and Cosines to 5 places of decimals. Dehra Dūu, 1886. (Out of print).
6. Lonarithmic Sines, Cosiues, 'Tangents and Cotaugents to 5 places of decimals. Dehra Dūn 1915. (Out of priut).
7. Common Logarithms to 5 places of decimals 18s5. Price As. 4 or 4^{d}.
8. Table for determining Heights in Traversing. Dehra Dūn, 1898. Price ds. 8 or 8^{d}.
9. Tables of distances in Chains and Links corresponding to a subtense of 20 feet. Delra Dūn, 1889. Price As. 4 or $4^{t h}$.

10. **	Ditto	ditto	10 feet.	Calcutta, 1915.
11. *	Ditto	8 feet.	Ditto.	

12. Star Charts for Intitude 20° N. By Colonel J. R. Hobday, I.S.C. Calcutta, 1904. Price Rs. 1.8 or $2 s$.
13. Star Charts for latitude 30° N. By Lt.Col. Burrard, R.E., F.R.S. Dehra Dün, 1906, Price Rs. 1.8 or 2^{s}.
14. *Catalogue of 249 Stars for epoch Jan. 1, 1892, from observations by the Survey. Debra. Dün, 1893. Price Rs. 2 or $2^{s} .8^{d}$.
15. *Rainfall from 1868 to 1903, mensured at the Trigonometrical Survey Office. Dehra Dūn. (Out of print.)

OLD MANUALS.

1. A Manual of Surveying for India, detailing the mode of operations on the Revenue Surveys in Bengal and the North-Western Provinces. Compiled by Captains R. Smyth and H. L. Thuillier. Calcutta 1851. (Out of print.)
2. Ditto ditto ditto. Second Edition. London, 1855. (Out of print).
3. A Manual of Surveying for India, detailing the mode of operations on the Trigonometrical, Topographical and Revenue Surveys of India. Compiled by Coīo.s. $二$. . L. Thuillier, C.S.I., F.R.S., and Lieutenant-Colonel R. Smyth. Third Edition, revised and onlarged. Calcuttn, 1875. (Out of print.)
4. Hand-book, Revenue Branch. Calcutta, 1893. Price Rs. 2-8 or 30-4".

SURVEY OF INDIA HAND.BOOKS.

1. Hand-book of General Instructions, Fourth Edition. Calcutta, 1914. Price Rs. 3 or 4^{3}
2. Hand-book, Trigonometrical Branch, Second Edition. Calcutta 1902, (Out of print.)
3. Hand-book, Topographical Branch, Third Edition. Calcutta, 1905. (Out of print.)
4. Hand-book of Topography.-Fourth Edition. Calcutta 1911. Chapters, in pamphlet forms-

Chapter	I-Introductory.-reprinted with additions, 1917. (Out of print).
"	Constitution and Organization of a Survey Party- reprinted, 1913. Price As. 4 or 4^{4}.
"	III-Triangulation and its Computation.-reprinted, 1914. Price As. 8 or $8^{\text {d }}$.
"	-Traversing and its Computation.-reprinted, 1913. Price As, 8 or 8^{d}.
"	Plane-tabling.-reprioted 1915. Price As. 8 or 8^{d}.
"	-Fair Mapping, -reprinted 1917. Price As. 8 or 8^{d}.
	I-Trans-frontier Reconnaissance.-reprinted 1914. Pri
" V	VIII-Surveys in time of war (not ready).
	IX—Forest Surveys and Maps.-reprinted 1914. Price As. 4 or $4^{\prime \prime}$.
,	X—Reproduction of the Sheets of the one-inch Map.-reprinted 1913. Price As. 4 or 4^{d}.
	XI-Geographical maps.-1917. Price As. 4 or $4^{\prime \prime}$.

5. *Photo-Litho Office, Notes on Organization, Methods and Processes. By Major W. C. Hedley, R. E. Revised and amplified by Capt. S. W. S. Hamilton, R. E. Calcutta, 1914.
b. The Reproduction (for the guidance of other Departments), of Maps, Plans, Photographs, Diagrams, and Line Illustrations. Calcutta, 1914. Price Rs. 3 or 4^{4}.

NOTES AND INSTRUCTIONS.

Drawing and Paper.

1. *Notes on the Drawing of New Stundard Maps. By Major W. M. Coldstream, R. E, Calcutta, 1908. (Out of print).
2. Notes on Printing Papers suitable for Maps, and on Whatman Drawing Paper. By Major W. Mf. Coldstream, R. E. Calcutta, 1911.

Printing and Field Litho processes.

3. Report on Rabber Offset Printing for Maps. By Najor W. M. Coldstream, R. E. Calcutta, 1911.
4. "Notes on the "Vandyke" or Direct Zinc Printing Process, with details of Apparatus and Chemicals required for asmall section. Compiled in the Photo and Litho Office, Survey of India. Calcutta, 1913.
5. *Report on the Working of the Light Field Litho Press (experimental) in November and December 1910 with A ppendices. By Lieutenant A. A. Chase, R. E., Calcuttn, 1911.
(1) Notes on some of the Methods of Reproduction suitable for the Field.
(2) Suggested Equipment Tables for the Light Field Litho Press (experimen. tal).
6. 'Report on a trial of the equipment of the 1st (Prince of Wales' Own) Snppers and Miners for reproducing maps in the field. By Lieutenant A. A. Chase, R. E. Calcutta, 1912. (Out of print).

Base Lines and Magnetic.

7. Notes on use of the Jäderin Base-line Apparatus. Dehra Dūn. 1904. (Out of print).
8. Miscellaneous Papers relating to the Measurement of Geodetic Bases by Jäderin Invar Apparatus. Dehra Dūn, 1912.
9. *Instructions for takinğ Magnetic Observations. By J. Eccles, M. A. Dehra Dūn, 1896. (Out of print).
10. Rectangular Coordinates.-On a Simplification of the Computations relating toBy J. Eccles, M. A. Dehra Dūn, 1911. Price Re. 1 or $1^{*-44^{4}}$
11. *For Explorers.-Notes on the use of Thermometers, Barometers and Hypsometers with Tables for the Computation of Heights. By J. de Graaff Hunter, M. A. Dehra Dūn, 1911. (Out of print).
12. Instructions for the Survey and Mapping of Town Guide Mape.

D-MISCELLANEOUS PAPERS.

(Obtainable from the Superintendent, Map Publication, 13, Wood Street, Calcutta).

UNCLASSIFIED PAPERS.

Geography.

1. A Stetch of the Geography and Geology of the Himalaya Mountains and Tibet (in four parts). By Colonel S. G. 13 urrard, R. E., F, R.S., Supdt., Trigonometrical Surveys, and Mr. H.H. Hayden, B. A., F. G. S., Supdt., Geological Survey of India. Calcutta, 1907-08.
\(\left.\begin{array}{cl}Part \quad I.—The High Peals of Asia.

" \& II.—The Priucipal Mountain Ranges of Asia.

" \& II.—The Rivers of the Himālaya and Tibet.

" IV.—The Geology of the Himalnya.\end{array}\right\}\)| Price Rs. 2 or $2^{s}-8^{d}$ per |
| :---: |
| part. |

2. *Report on the Identification and Nomenclature of the Himālayan Peaks as seen from Kātmāndu, Nepāl. By Oapt. H. Wood, R. E. Calcutta, 1904.
3. Routes in the Western Himālaya, Kashmir, ete. By Lieut.Colonel T. G. Montgomerio, R. E., F. R. S., F. R. G. S. Third Edition. Revised and corrected. Dehra Dūn, 1909. (Out of print.)

Special Reports.

4. Report on the Recent Determination of the Longitude of Madras. By Capt.S. G. Burrard, R. E. Calcutta, 1897. (Out of print).
5. *Report on the Observation of the Total Solar Eelipse of 6th April 1875 at Camorta, Nicobar Islands. By Colonel J. Waterhouse. Calcutta, 1875. (Out of print).
6. *The Total Solar Eclipse, January 22, 1898. Dehra Dūn, 1898.
(1) Report on the obserrations at Dumrann.
(2) Report on the observations at Pulgaon.
(3) Report on the observations at Sahdol,
7. *Report on Local Attrnction in India, 1893-94. By Captain S. G. Burrard, R.E. Calcutta, 1895. (Out of print.)
8. *Report on the Trigonometrical Results of the Earthquake in Assam. By Captain S. G. Burrard. Calcutta, 1898. (Out of print.)
9. *Notes on the Topographical Survey of the $\frac{1}{50,000}$ Sheets of Algeria by the Topographical Section of the "Service Geographique de l'Armée". By Captain W.M. Coldstream, R.E. Calcutta, 1906.
10. *The Simla Estates Boundary Survey on the rale of 50 feet to 1 inch. By Captain E.A. Tandy, R.E. Calcutta, 1906.

Geodesy.

11. Notes on the Theory of Errors of Observation. By J. Eccles, Mf.A. Dehra Dūn, 1903. Price $A s .8$ or S^{d}.
12. *Note on a Change of the Axes of the Terrestrial Spheroid in relation to the Triangulation of the G.T. Survey of India. By J. de Graff Hunter, M.A. Dehra Dūn. (Out of print.) Now incorporated in Professional Paper No. 16.
13. Report on the Treatment and use of Invar in measuring Geodetic Bases. By Capt. H. H. Turner, R. E. London, 1907. Price As. 8 or \mathcal{S}^{\prime}.

Projections.

14. On the projection used for the General Maps of India. Dehra Dūn, 1903. (Out of print).
15. *On the deformation resulting from the method of constructing the International Atlas of the World on the scale of one to one million. By Ch. Lallemand. Translated by J. Eccles, M.A., together with tables for the projection of 1/M Maps on the International aystem. Dehra Dūn, 1912. (Out of print).

Mapping.

16. A Note on the different methods by which hills can be represented upon maps. By Colonel S. G. Burrard, C.S.I., R.E., F.R.S., Surveyor General of India. Simla, 1912
17. A Note on the representation of hills. By Major C. L. Robertson, C.M.G., R.E. Debra Dūn, 1912.
18. *A Note on the representation of hills on the Maps of Indin. By Major F. W. Pirrie, I.A. Delira Dūn, 1912.
19. A consideration of the Contour intervals and Colour Scales best suited to Indian 1/M maps. By Captain M. O'C. Tandy, R.E. Calcutta, 1913. (Out of print).
 stated.
No. 1-Projection-On the Projection for a Map of India and adjacent Countries on the scale of 1: 1,000,000. By Colonel St. G. C. Gore, R.E. Second Edition, Dehra Dūn, 1903.
No. 2 *Base Lines-Method of measuring Geodetic Bases by means of Metallic Wires. By M. Jüderin. (Transluted from Mümoires Prësentēs par Livers Savants à l'Acadèmie des Sciences de l'Institut de France). Dehra Dūn, 1899. (Out of print.)
No. 3-Base Lines-Method of measuring Geodetic Bases by means of Colby's Compensated Bars. Compiled by Lieutenant H. McC. Cowie, R. E. Dehra Dūn, 1900. (Out of print.)
No. 4-Spirit-levels-Notes on the Calibration of Levels. By Lientenant E. A. Tandy, R. E. Dehra Dūn, 1900. (Out of print.)
No.5-Geodesy-The Attraction of the Himãlaya Mountains upon the Plumb-Line in India. Considerations of recent data. By Major S. G. Burrard, R. E. Second Edition. Dehra Dūn, 1901. Price Rs. 2 or $2^{s}-8^{d}$.
No. 6-Base Lines-Account of a Determination of the Co-efficients of Expansion of the Wires of the Jäderin Base-Line Apparatus. By Captain G. P. LenoxConyngham, R. E. Dehra Dūn, 1902. (Out of print.)
No. 7-Miscellaneous. Calcuttn, 1903.
(1) On the values of Longitude employed in maps of the Survey of India. (2) Levelling across the Ganges at Dāmukdia.
(3) Experiment to test the increase in the length of a Levelling Staff due to moisture and temperature.
(4) Description of a sun-dial designed for use with tide gauges.
(5) Nickel-steel alloys and their application to Geodesy. (Translated from the French.)
(6) Theory of electric projectors. (Translated from the Fronch.)

No. 8-Magnetic-Esperiments made to determine the temperature co-eflicients of Watson's Maguetographs. By Captain H. A. Denholm Fraser, R. E. Calcutta 1905.

No, 9-Geodesy-An Account of the Scientific work of the Survey of India and a Comparison of its progress with that of Foreign Surveys. Prepared for the use of the Survey Committeo, 1905. By Lieutenant-Colonel S. G. Burrard, R. E., F. R.S. C'alcutta, 1005.

No. 10-Pendulums-The Pendulum Operations in India. 1903-1907. By Major G. P. Lenox-Conyngham, R. E. Dehra Dūn, 1908. Price Rs. $2-8$ or $3^{3}-4^{4}$.

No. 11-Refraction-Observations of Atmospheric Refraction, 1905-09. By H. G. Shaw, Survey of India. Dehra Dūn, 1911. (Uut of print.)
No. 12-Geodesy-On the Origin of the Himālaya Mountains. By Coloncl S. G. Burrard, C. S. I., R. E., F. R. S. Calcutta, 1912.
No. 13-Isostasy-Investigation of the Theory of Isostasy in India. By Major II. L. Crostheait, R.E. Dehra Dūn, 1912. (Out of print.)
No. 14-Refraction-Formulæ for Atmospheric llefraction and their application to Terrestrial Refraction and Geodesy, By J. de Graaff Hunter, M. A. Dohra Dūn, 1913. Price Rs. 2 or $2^{s} .8^{d}$.
No. 15-Pendulums-The Pendulum Operations in India and Burma, 1908.13, By Captain H. J. Couchman, R. E. Debra Dūn, 1915. (Out of print).
No. 16-Geodesy-The Earth's Axes and Triangulation. ByJ. de Graaff Hunter, M.A. Dehra Dūn, 1918. Price Rr, 4 or $5^{s}-4^{d}$.
No. 17-Isostasy-Investigations of Isostasy in Himalayan and Neighbouring Regions. By Colonel Sir S. G. Burrard, K. O. S. I., R. E., F. R. S. Dehra Dün, 1918. Price Re. 1 or 1' $4^{\prime \prime}$.

DEPARTMENTAL PAPERS SERIES. (For departmental use only.)

No. 1-Type-A consideration of the most suitable forms of type for use on maps. By Captain M. O'C. Tandy, R. E. Dehra Dūn, 1913.
No. 2-Symbols-A review of the Boundary Symbols used on the maps of various countries. By Captain M. O'C. Tandy, R. E. Dehra Dūn, 1913.
No. 3-Maps-Extract from "'Ihe New Map of Italy, Scale 1: 100,000." By Luigi Giansitrapani. Translated from the Italian by Major W. MI. Coldstream, R.E. Dehra Dūu, 1913.
No. 4-Town Surveys-A report on the practice of Town Surveys in the United Kingdom and its application to Iudia. By Major C. L. Robertson, C.M.G., R.E. Dehra Dūu, 1913.
No. 5-Stereo-plotter-The Thompson Stereo-plutter and its use, with notes on the ficld work. By Lieutenant K. Mason, R. E. Dehra Dūn 1913.
No. G-Levelling-Levelling of High Precision. By Ch. Lallemand. Translated from the French by J. de Graaff Hunter, M.A. Dehra Dūn, 1914.
No. 7-Standard Bars-Bar Comparisons of 1907-08. By Ifujor H. AlcC. Cowie, R. E. Dehra Dūn, 1915.

No. s-Helio-zincography-Keport on Rubber Off-set Flat bed Machine Printing. By Captain S. W. Sackville Hamillon, R.E. Calcutta, 1915.

PROFESSIONAL FORMS.

A large number of forms for the record and reduction of Survey Operations are stocked at Dehra Dũn. A list of these can be obtained from the Superintendent of the Trigonometrical Survey, Dehra Dūn, U. P.

PUBLICATIONS OF THE ROYAL SOCIETY.

(Obtainable from Messrs. Dulan \& Co., 37, Soho Square, Loudon, W., or Messrs. Harrison \& Sons, St. Martin's Lane, London, or the Royal Society at Burlington House, London.)

1. Philosophical Transactions, Series A, Volume 186, 1895. Iudia's Contribution to Geodesy, by General J. T. Walker, R.E., C.B., F.R.S., LL.D.
2. Philosophical Transactions, Series A, Volume 205, pages 289-318, 1905. On the Intensity and Direction of the Force of Gravity in lndia, by Lieutenant-Colonel S.G. Burrard, R.E., F.R.S.
3. Proceedings, Series A, Volume 90, pages 32-40, 1914. On the effect of the Gangetic Alluvium on the Plumb-Line in Northern ludia, by R. D. Oldham, F.R.S.
4. Proceedings, Series A, Volume 91, pages 220-238, 1915. On the origin of the IndoGangetic trough, commonly called the Himaliyan Foredeep, by Colonel Sir S. G. Burard, K.O.S.I., R.E., E.R.S.

AGENTS FOR THE SALE OF INDLAN OFFICIAL PUBLICATIONS.

LONDON.

A. Constable \& Co., 10, Orange Street, Leicester Square, W.C.
P. S. King \& Son, 2 and 4, Great Smith Street, Westminster, S.W.
Kegan Paul, Trencit, Tindener \& Co., 68, Carter Lane, E.C.
B. Quamici, 11, Grafton Street, New Bond Street, W.
Henri S. Kino \& Co., 65, Corobill, E.C.
Grindlar \& Co., 54, Parliament Street, S.W.
T. Fislef Unwin, Ltd., 1, Adelphi Terrace, W.C.
W. 'Ihacker \& Co., 2, Creed Lane, Ludgate Hill, E.C.
Lrzac \& Co., 46, Great Russell Street, W.C.
Edfard Stanford, Ltd. (for maps only), 12-14, Long dere, W.C.

EDINBURGH.
Oliter ant Boyd, Tweeddale Court.
DUBLIN.
E. Ponsonbl, Ltd., 116, Grafton Street.

OXFORD.
B. H. Blackwell, 50 and 51, Broad Street.

CAMBRIDGE.

Deighton, Bell \& Co., Lid., Trinity Street.
ON THE CONTINENT.
Ennest Lenoux, Rue Bounparte, Paris, France. Mantinds Niulioff, The Hague, Holland.

IND1A.

Thacker, Spink \& Co., No. 3, Espladade, East, Calcutta, and Simla.
Nefran \& Co., No. 4, Dalbousie Square, Calcutta.
Lal Chand \& Sons, No. 76, Lower Circular Road, Calcutta.
Manager, The Indian Scifool Supply Depot, No. 309, Bow Bazar Street, Calcutta, and Dacen.
Rai Safib M. Gulab Singit \& Sons, Lahore. 'Imacker \& Co., Litd., Bombay.
D. B. Taraporevala, Sons \& Co., Bombay.

Higgindothans, Ltd., Madras.
Proprietor, Mafasilite Printing Works, Mussoorie.
Curator, Government Book Depôt, Burma, Rangoon.
Cockboris Aaency, Srinagar.
Burman \& Co., Muzaffarpur.

Vol. XIIL.]

refrbesce:
The thick lines show the niargins of the sheets of the International Map of the Worid, seale 1:1,000,000. Kach sheet is desigmated by the letter N (Northern hemigptere), followed by the markinul tetter azal number corresponding to ith position, e. ℓ_{7}, the sheet which includes Bombay is
$\mathrm{N}, \mathrm{E}-\mathrm{s}$.
The nsures in circtes are the numbers of the sheets of the India and Adjawent Countriea Series on the Seale of $1: 1,000,000$.
Re8. No. 3441D, 16

[^0]: (a) Additionsl points, preriously fixed, will also be used in this area
 (b) Compatations not yet completed.

[^1]: - Limita mhich must not be exceoded in "Levelling of Uigh Precision".

[^2]: Nots－When the sign is＋he Y．F．is greater，and when－it is legs than the mean．

[^3]: - " on mme of the Greater Probleme if Phyaical Geology, "Bull. Phil. Soc. Wazhington, 11, 51 - 64 (1892).
 + The modern geological conception is perhaps best expressed by Prof. Barrell: "Asthenosphere "-" a thick earth-ahell marked by a caracity to jield readily to long-endaring atraine of limited magnitade," though tranmitting earthquale-waves like a rigid body. "The Strength of the Earth; Crat," Journ, Geol. (Chicago), 82, 23 (1914-15), domerous referedces.

[^4]: - J. F. Haytord, 'The Figure of the Eartb and lsostosy,' U. S. Coast and Geodetic Sorvey (Wabington, 1909), and 'Supplementary Investigation' (1910).
 + "Interpretation of Anomalice of Gravity," U. S. Geol. Norp., Professional Paper 85 C (1913).
 J Op. cit., 22, 313 (1914).

[^5]: * All these reniduals are fur meridional deflections only. The observations of eat and west (prime vertical) deffections are too few for generalization.

 ## \dagger Op. cit., 22, 318 (1914).

 \ddagger 'Das antlitz der Erde,' vol. 3 (2), pp. 705-708; English translation, 'The Face of the Earth,' vol. 4, pp. 611-614.

[^6]: * Memoirs, Geological Survey of India, Vol, XLII, part 2, 1917.

[^7]: * Colonel Burrard's paper on the Gnagetic Trongb, Proc. Itoyal Society A, Volume 91, pages 230, 293.
 \dagger Under the limalaga the density of the crast is lielow normal: sonth of the trough there is a zone of cxcessive density known as the "hidden range." (page 124).

[^8]: * Gravity determinstions on the Ocean, Berlin, 1910. Hecker assumed the Ocean to be isostatically compensated.

[^9]: * Burvey of India, Narrative Reporta, 1903-04, para. 139.
 † Report, 16th International Geodetic Conference. 1911, page 230.

[^10]: * A note by Colonel Lenor Conyngham on this abject, giving a full explonation, has recently been pab. lished in the Records, Survey of India, Vol. XI, p. 97.

[^11]: * Special charts can be supplied of those series for which no Synoptical Volumes are available, viz. :- all Barma, Chittagong and Balochistan triangalation, the Assam Iongitudinal, the Sambalpar Meridional, and the Gilgit Series, with a few recent secondary series in India.

[^12]: * Price Re. 1 or 1^{9}. $4^{\text {d }}$

[^13]: ** For Departmental use only.

